江苏省南通市历年中考数学试卷真题合集(共6套)_第1页
江苏省南通市历年中考数学试卷真题合集(共6套)_第2页
江苏省南通市历年中考数学试卷真题合集(共6套)_第3页
江苏省南通市历年中考数学试卷真题合集(共6套)_第4页
江苏省南通市历年中考数学试卷真题合集(共6套)_第5页
已阅读5页,还剩175页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE32014年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014•南通)﹣4的相反数()A.4B.﹣4C.D.﹣2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠5.(3分)(2014•南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)6.(3分)(2014•南通)化简的结果是()A.x+1B.x﹣1C.﹣xD.x7.(3分)(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1C.a≤﹣1D.a<﹣19.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6D.6﹣610.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为吨.12.(3分)(2014•南通)因式分解a3b﹣ab=.13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=.14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线.15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=cm.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=,y=;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.

2014年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014•南通)﹣4的相反数()A.4B.﹣4C.D.﹣考点:相反数.菁优网版权所有分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°考点:平行线的性质.菁优网版权所有专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.菁优网版权所有分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠考点:二次根式有意义的条件;分式有意义的条件.菁优网版权所有分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x﹣1>0,解得x>.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(3分)(2014•南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)考点:关于x轴、y轴对称的点的坐标.菁优网版权所有分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.点评:此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.6.(3分)(2014•南通)化简的结果是()A.x+1B.x﹣1C.﹣xD.x考点:分式的加减法.菁优网版权所有专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.(3分)(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.菁优网版权所有分析:根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1C.a≤﹣1D.a<﹣1考点:解一元一次不等式组.菁优网版权所有分析:将不等式组解出来,根据不等式组无解,求出a的取值范围.解答:解:解得,,∵无解,∴a≥1.故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.菁优网版权所有分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AB,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.菁优网版权所有专题:计算题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为6.75×104吨.考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.菁优网版权所有分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差继续分解.解答:解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案是:ab(a+1)(a﹣1).点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.考点:根的判别式.菁优网版权所有分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.考点:抛物线与x轴的交点.菁优网版权所有分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.解答:解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==﹣1,即x=﹣1.故答案是:x=﹣1.点评:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=.15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.考点:勾股定理;直角梯形.菁优网版权所有分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.解答:解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm).故答案为:8.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).考点:几何概率.菁优网版权所有分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:SA>SB>SC,故落在A区域的可能性大,故答案为:A.点评:本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.菁优网版权所有专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.考点:配方法的应用;非负数的性质:偶次方.菁优网版权所有专题:计算题.分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.考点:整式的混合运算;零指数幂;负整数指数幂.菁优网版权所有分析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y=[x2y(2xy﹣2)]÷x2y=2xy﹣2.点评:本题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.考点:反比例函数与一次函数的交点问题.菁优网版权所有专题:计算题.分析:(1)先把A(m,2)代入y=﹣2x可计算出m,得到A点坐标为(﹣1,2),再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当x<﹣1或0<x<1时,﹣2x>.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.菁优网版权所有分析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数(率)分布直方图;扇形统计图;中位数.菁优网版权所有专题:图表型.分析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=2,y=3;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.菁优网版权所有分析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.菁优网版权所有分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.考点:一次函数的应用.菁优网版权所有专题:应用题.分析:(1)根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s﹣18s=6s,注满“几何体”上面的空圆柱形容器需42s﹣24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;(2)根据圆柱的体积公式得a•(30﹣15)=18•5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为Scm2,根据圆柱的体积公式得5•(30﹣S)=5•(24﹣18),再解方程即可.解答:解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a•(30﹣15)=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•(30﹣S)=5•(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.点评:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.菁优网版权所有分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BPAB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BPAB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.考点:四边形综合题.菁优网版权所有分析:(1)利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG是等腰三角形;(2)利用勾股定理EM2=AE2+AM2,EC2=BE2+BC2,得出CM2=EC2﹣EM2,利用线段关系求出CM.(3)作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=a∴BE=AB﹣AE=3﹣1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2﹣EM2,∴CM2=20﹣1﹣a2=19﹣a2,∴CM=.(3)解:如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF•MG=××=+6,即S=+6,当a=时,S有最小整数值,S=1+6=7.点评:本题主要考查了四边形的综合题,解题的关键是利用三角形相似求出线段的长度.28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.考点:二次函数综合题.菁优网版权所有分析:(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析式,把对称轴代入直线BC的解析式即可求得.(2)设直线MN的解析式为y=kx+b,依据E(1,2)的坐标即可表示出直线MN的解析式y=(2﹣b)x+b,根据直线MN的解析式和抛物线的解析式即可求得x2﹣bx+b﹣3=0,所以x1+x2=b,x1x2=b﹣3;根据完全平方公式即可求得∵|x1﹣x2|====,所以当b=2时,|x1﹣x2|最小值=2,因为b=2时,y=(2﹣b)x+b=2,所以直线MN∥x轴.(3)由D(1,4),则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AO•AP,从而求得OP的长,进而求得P点坐标.解答:解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,∴P1(19,0),P2(﹣17,0).点评:本题考查了待定系数法求解析式,二次函数的交点、顶点坐标、对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键.

2015年江苏省南通市中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3mB.3mC.6mD.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.218.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣29.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值. 2015年江苏省南通市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3mB.3mC.6mD.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图..【分析】根据俯视图是从上面看所得到的图形判断即可.【解答】解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106【考点】科学记数法—表示较大的数..【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7700000用科学记数法表示为7.7×106.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形..【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)【考点】三角形三边关系..【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2【考点】解直角三角形;坐标与图形性质..【分析】设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.【解答】解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.【点评】本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.21【考点】利用频率估计概率..【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2【考点】一元一次不等式的整数解..【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个【考点】一次函数的应用..【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.【解答】解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2【考点】相似三角形的判定与性质;勾股定理;圆周角定理..【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB﹣DE求解即可得出答案.【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.【点评】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).【考点】因式分解-运用公式法..【专题】计算题.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.【考点】根与系数的关系..【分析】根据两根之和等于一次项系数与二次项系数商的相反数作答即可.【解答】解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.【点评】本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=y2.【考点】整式的混合运算..【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【考点】方差;折线统计图..【分析】根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.【点评】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【考点】垂径定理;勾股定理..【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.【点评】本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【考点】等腰三角形的性质..【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.【考点】相似三角形的判定与性质;矩形的性质..【分析】首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.【解答】解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.【点评】本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.【考点】抛物线与x轴的交点..【分析】首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.【解答】解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设f(x)=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.【点评】本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.【考点】实数的运算;零指数幂;负整数指数幂..【专题】计算题.【分析】(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).【考点】解直角三角形的应用-方向角问题..【专题】计算题.【分析】过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.【解答】解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【考点】列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图..【分析】(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.【解答】解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下: 男 男 女 女男 ﹣﹣﹣ (男,男) (女,男) (女,男)男 (男,男) ﹣﹣﹣﹣ (女,男) (女,男)女 (男,女) (男,女) ﹣﹣﹣ (女,女)女 (男,女) (男,女) (女,女) ﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.【考点】二元一次方程组的应用..【分析】1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.【解答】解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.【点评】本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.【考点】反比例函数与一次函数的交点问题..【分析】(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.【解答】解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.【考点】切线的性质;扇形面积的计算..【分析】(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.【解答】解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).【点评】此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.【考点】平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形..【专题】证明题.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论