湖北省武汉市名校2024届八年级数学第二学期期末调研试题含解析_第1页
湖北省武汉市名校2024届八年级数学第二学期期末调研试题含解析_第2页
湖北省武汉市名校2024届八年级数学第二学期期末调研试题含解析_第3页
湖北省武汉市名校2024届八年级数学第二学期期末调研试题含解析_第4页
湖北省武汉市名校2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市名校2024届八年级数学第二学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.2.关于的一元二次方程,下列说法错误的是()A.方程无实数解B.方程有一个实数解C.有两个相等的实数解D.方程有两个不相等的实数解3.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班 B.(2)班 C.(3)班 D.(4)班4.下列说法不能判断是正方形的是()A.对角线互相垂直且相等的平行四边形 B.对角线互相垂直的矩形C.对角线相等的菱形 D.对角线互相垂直平分的四边形5.下列给出的四个点中,在函数y=2x﹣3图象上的是()A.(1,﹣1)B.(0,﹣2)C.(2,﹣1)D.(﹣1,6)6.﹣2的绝对值是()A.2 B. C. D.7.不能被()整除.A.80 B.81 C.82 D.838.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21010.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB11.在△ABC中,a、b、c分别是∠A,∠B,∠C的对边,若(a﹣2)2+|b﹣2|+=0,则这个三角形一定是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.钝角三角形12.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)

35

39

42

44

45

48

50

人数(人)

2

5

6

6

8

7

6

根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分二、填空题(每题4分,共24分)13.如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.14.计算:=.15.已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。16.分解因式:=___________________.17.已知,则=______.18.因式分解的结果是____.三、解答题(共78分)19.(8分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.20.(8分)如图,在平面直角坐标系中,已知点和点.(1)求直线所对应的函数表达式;(2)设直线与直线相交于点,求的面积.21.(8分)为了宣传2018年世界杯,实现“足球进校园”的目标,任城区某中学计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)学校准备购进这两种品牌的足球共50个,并且B品牌足球的数量不少于A品牌足球数量的4倍,请设计出最省钱的购买方案,求该方案所需费用,并说明理由.22.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?23.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,所对应扇形的圆心角度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.24.(10分)如图所示,从一个大矩形中挖去面积为和的两个小正方形.(1)求大矩形的周长;(2)若余下部分(阴影部分)的面积与一个边长为的正方形的面积相等,求的值.25.(12分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型乙型(1)如何进货,进货款恰好为元?(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?26.某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:甲种图书乙种图书进价(元/本)1628售价(元/本)2640请回答下列问题:(1)书店有多少种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的函数知识来解决)

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【题目详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.2、B【解题分析】

将各选项的k带入方程验证,即可得到答案.【题目详解】解:A,当k=2017,k-2019==-2,该方程无实数解,故正确;B,当k=2018,k-2019==-1,该方程无实数解,故错误;C,当k=2019,k-2019==0,解得x=1,故正确;D,当k=2020,k-2019=2020-2019=1,解得x=0或x=2,故正确;因此答案为B.【题目点拨】本题主要考查二元一次方程的特点,把k值代入方程验证是解答本题的关键.3、D【解题分析】

直接根据方差的意义求解.【题目详解】∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选D.【题目点拨】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【解题分析】

正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.【题目详解】A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D【题目点拨】本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件5、A【解题分析】

把点的坐标代入解析式,若左边等于右边,则在图象上.【题目详解】各个点的坐标中,只有A(1,-1)能是等式成立,所以,在函数y=2x﹣3图象上的是(1,﹣1).故选:A【题目点拨】本题考核知识点:函数图象上的点.解题关键点:理解函数图象上的点的意义.6、A【解题分析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.7、D【解题分析】

先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【题目详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【题目点拨】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.8、B【解题分析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、B【解题分析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.10、C【解题分析】

A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.11、C【解题分析】

根据非负数的性质列出方程,解出a、b、c的值后,再用勾股定理的逆定理进行判断.【题目详解】解:根据题意,得a-2=0,b-=0,c-2=0,解得a=2,b=,c=2,∴a=c,又∵,∴∠B=90°,∴△ABC是等腰直角三角形.故选C.【题目点拨】本题考查了非负数的性质和勾股定理的逆定理,属于基础题型,解题的关键是熟悉非负数的性质,正确运用勾股定理的逆定理.12、D【解题分析】试题解析:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.1.故错误的为D.故选D.二、填空题(每题4分,共24分)13、【解题分析】

如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.【题目详解】解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.∵四边形ABCD是正方形,∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,∵四边形EFGH是正方形,∴∠MEN=∠AEB=90°,∴∠AEM=∠BEN,∴△AEM≌△BEN(ASA),∴AM=BN,EM=EN,∠AME=∠BNE,∵AB=BC,EF=EH,∴FM=NH,BM=CN,∵∠FMB=∠AME,∠CNH=∠BNE,∴∠FMB=∠CNH,∴△FMB≌△HNC(SAS),∴∠MFB=∠NHC,∵∠EFO+∠EOF=90°,∠EOF=∠POH,∴∠POH+∠PHO=90°,∴∠OPH=∠BPC=90°,∵∠DBP=75°,∠DBC=45°,∴∠CBP=30°,∵BC=AB=2,∴PB=BC•cos30°=,PR=PB=,RC=PR•tan30°=,∵∠RTD=∠TDC=∠DCR=90°,∴四边形TDCR是矩形,∴TD=CR=,TR=CD=AB=2,在Rt△PDT中,PD2=DT2+PT2=,故答案为.【题目点拨】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14、3【解题分析】分析:.15、120【解题分析】

根据菱形的面积等于对角线积的一半,即可求得答案.【题目详解】解:菱形ABCD的面积【题目点拨】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.16、【解题分析】

先提取公因式2x后,再用平方差公式分解即可;【题目详解】解:==;故答案为:;【题目点拨】本题主要考查了提公因式法与公式法的综合应用,掌握提公因式法与公式法是解题的关键.17、【解题分析】

已知等式整理表示出a,原式通分并利用同分母分式的加减法则计算,把表示出的a代入计算即可求出值.【题目详解】解:由=,得到2a=3b,即a=,则原式===.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、【解题分析】

先提取公因式6x2即可.【题目详解】=.故答案为:.【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.三、解答题(共78分)19、(1)①证明见解析;②证明见解析;(2)3【解题分析】

(1)①首先证明△ABA1是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.【题目详解】(1)证明:①如图1中,∵∠BAC=60°,BA=BA1,∴△ABA1是等边三角形,∴∠AA1B=60°,∵∠A1BD1=60°,∴∠AA1B=∠A1BD1,∴AC∥BD1,∵AC=BD1,∴四边形ABD1C是平行四边形.②如图2中,连接BD1.∵四边形ABD1C是平行四边形,∴CD1∥AB,CD1=AB,∠OCD1=∠ABO,∵∠COD1=∠AOB,∴△OCD1≌△OBA(AAS),∴OC=OB,∵CD=BA,∠DCO=∠ABO,∴△DCO≌△ABO(SAS),∴DO=OA.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.在Rt△A1BC中,∵∠CA1B=90°,BC=2.AB=3,∴CA1=52-3∵12•A1C•A1B=12•BC•A1∴A1F=125∵∠A1FB=∠A1EB=∠EBF=90°,∴四边形A1EBF是矩形,∴EB=A1F=125,A1E=BF=9∴AE=3﹣125=3在Rt△AA1E中,AA1=952+【题目点拨】本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20、(1);(2).【解题分析】

(1)根据点A,B的坐标,利用待定系数法即可求出直线AB所对应的函数表达式;(2)联立直线OC及直线AB所对应的函数表达式为方程组,通过解方程组可求出点C的坐标,再利用三角形的面积公式结合点A的坐标即可求出△AOC的面积.【题目详解】解:(1)设直线AB所对应的函数表达式为y=kx+b(k≠0),将A(5,0),B(0,4)代入y=kx+b,得:,解得:,∴直线AB所对应的函数表达式;(2)联立直线OC及直线AB所对应的函数表达式为方程组,得:,解得:,∴点C坐标,.【题目点拨】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题的关键是:(1)根据点A,B的坐标,利用待定系数法求出直线AB所对应的函数表达式;(2)联立两直线的函数表达式成方程组,通过解方程组求出点C的坐标.21、(1)A品牌的足球的单价为40元,B品牌的足球的单价为100元(2)当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元【解题分析】

(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列二元一次方程组求解可得;(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据“B品牌足球的数量不少于A品牌足球数量的4倍”列不等式求出a的范围,再由购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000知当a越大,购买的总费用越少,据此可得.【题目详解】解:(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据题意,得:解得:答:A品牌的足球的单价为40元,B品牌的足球的单价为100元.(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据题意,得:50﹣a≥4a,解得:a≤10,∵购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000,∴当a越大,购买的总费用越少,所以当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元.【题目点拨】本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系和不等关系,并据此列出方程或不等式.22、(Ⅰ)28.(Ⅱ)平均数是1.52.众数为1.8.中位数为1.5.(Ⅲ)200只.【解题分析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.23、(1)50;(2)144°,图见解析;(3).【解题分析】

(1)根据“优”的人数和所占的百分比即可求出总人数;

(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;

(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.【题目详解】(1)本次调查的学生总数为:15÷30%=50(人);

故答案为:50;

(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;

“中”等级的人数是:50-15-20-5=10(人),补图如下:

故答案为:10;

(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:

共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,

则所选的两位同学测试成绩恰好都为“良”的概率是.【题目点拨】此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)28cm;(2)2【解题分析】

(1)利用正方形的性质得出两个小正方形的边长,进而得出大矩形的长和宽,即可得出答案;(2)求阴影部分面积的算术平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论