2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题含解析_第1页
2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题含解析_第2页
2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题含解析_第3页
2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题含解析_第4页
2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新疆吐鲁番市高昌区数学八年级第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65° B.∠A:∠B:∠C=2:3:5C.a:b:c=:: D.a=6,b=10,c=122.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为()A.(﹣,2) B.(﹣3,) C.(﹣2,2) D.(﹣3,2)3.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°4.我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是()A.40 B.50 C.57 D.755.用反证法证明:“中,若.则”时,第一步应假设()A. B. C. D.6.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm27.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A. B.C. D.8.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补 B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分 D.全等三角形的对应边相等9.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点 B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟 D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快10.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________12.在平行四边形ABCD中,,则的度数是______°.13.用配方法解一元二次方程x2-mx=1时,可将原方程配方成(x-3)2=n,则m+n的值是________

.14.如图,字母A所代表的正方形面积为____.15.点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.16.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.17.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是

.18.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.20.(6分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.动手操作:(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;特例探索:(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;拓展应用:(3)如图4,平行四边形,,,点在线段上且,①请你在图4中画出平行四边形的内接菱形,点在边上;②在①的条件下,当的长最短时,的长为__________21.(6分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.22.(8分)先化简,再求值:÷(2+),其中x=﹣1.23.(8分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.(1)求反比例函数解析式和点C的坐标;(2)求△OCD的面积.24.(8分)已知:关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的根都是整数,求m的值.25.(10分)某制笔企业欲将200件产品运往,,三地销售,要求运往地的件数是运往地件数的2倍,各地的运费如图所示.设安排件产品运往地.地地地产品件数(件)运费(元)(1)①根据信息补全上表空格.②若设总运费为元,写出关于的函数关系式及自变量的取值范围.(2)若运往地的产品数量不超过运往地的数量,应怎样安排,,三地的运送数量才能达到运费最少.26.(10分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭3月份用水量的众数、中位数和平均数;(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据勾股定理的逆定理和三角形的内角和定理进行判定即可.【题目详解】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.【题目点拨】本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.2、A【解题分析】

根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【题目详解】∵直线y=-x+4与x轴、y轴分别交于A、B两点,

∴点A的坐标为(3,0),点B的坐标为(0,4).

过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,

∴OC=3,OE=2,

∴CE=,∴点C的坐标为(-,2).

故选A.【题目点拨】考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.3、C【解题分析】

直接利用多边形的内角和与外角和定义分析得出答案.【题目详解】八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选C.【题目点拨】本题考查了多边形的内角和与外角和,正确把握相关定义是解题的关键.4、B【解题分析】

根据众数的定义求解即可.【题目详解】在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.故选B.【题目点拨】此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5、B【解题分析】

熟记反证法的步骤,直接选择即可【题目详解】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.故选:B【题目点拨】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.

反证法的步骤是:

(1)假设结论不成立;

(2)从假设出发推出矛盾;

(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6、D【解题分析】

根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【题目详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【题目点拨】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.7、C【解题分析】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100)=60+0.8x﹣80=0.8x﹣20,所以,y与x的函数关系为,纵观各选项,只有C选项图形符合.故选C.点睛:本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.8、B【解题分析】

把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【题目详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【题目点拨】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9、C【解题分析】

A、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,错误;B、由函数图象可知,甲、乙两队都走了1000米,路程相同,错误;C、因为4﹣3.8=02分钟,所以,乙队比甲队少用0.2分钟,正确;D、根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,错误;故选C.【题目点拨】本题考查函数的图象,能正确识图,根据函数图象所给的信息,逐一判断是关键.10、C【解题分析】

根据矩形的性质即可判断.【题目详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【题目点拨】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题(每小题3分,共24分)11、【解题分析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【题目详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.【题目点拨】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12、100°【解题分析】如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故答案是:100°.13、16【解题分析】

因为配方成的方程和原方程是等价的,故只要把两个方程展开合并,根据方程的每项系数相等列式求解即可求出m+n的值.【题目详解】解:由题意得:x2-mx-1=(x-3)2-n=x2-6x+9-n,则-m=-6,∴m=6,-1=9-n,∴n=10,∴m+n=10+6=16.故答案为:16【题目点拨】本题考查了一元二次方程,等价方程的对应项及其系数相同,正确理解题意是解题的关键.14、1【解题分析】

根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【题目详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2-PQ2=289-225=1,则正方形QMNR的面积为1.故答案为:1.【题目点拨】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15、(2,3)【解题分析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),

即(2,3),

故答案为:(2,3).16、∠B=90°.【解题分析】

根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【题目详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.17、k>0【解题分析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限。由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。18、∠B=∠1或【解题分析】

此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【题目详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【题目点拨】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.三、解答题(共66分)19、解:(1)如图所示:点A1的坐标(2,﹣4)。(2)如图所示,点A2的坐标(﹣2,4)。【解题分析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标。(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2。20、(1)详见解析;(2)3;(3)①详见解析;②的长为【解题分析】

(1)以EF为边,作一个菱形,使其各边长都为;(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.【题目详解】(1)如图2所示,菱形即为所求;(2)如图3,连接,四边形是矩形,,,,,四边形是菱形,,,,,即,,;(3)①如图4所示,由(2)知:,,作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,四边形是菱形,,,即当的长最短时,的长为【题目点拨】本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.21、投递快递总件数的月平均增长率是10%.【解题分析】

设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.【题目详解】解:设投递快递总件数的月平均增长率是x,依题意,得:30(1+x)2=36.3则1+x=±1.1解得:x1=0.1=10%,x2=−2.1(舍),答:投递快递总件数的月平均增长率是10%.【题目点拨】考核知识点:一元二次方程的应用.理解增长率是关键.22、当x=﹣1时,原式==.【解题分析】试题分析:原式=÷=÷==,当x=﹣1时,原式==.考点:分式的化简求值.23、(1)y=,点C(6,1);(2).【解题分析】

(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.【题目详解】解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,∴n=6,∴点A(1,6)代入y=得,k=6,∴反比例函数y=,当x=时,y=12,∴点D(,12)代入直线l2:y=﹣2x+b得,b=13,∴直线l2:y=﹣2x+13,由题意得:解得:,,∴点C(6,1)答:反比例函数解析式y=,点C的坐标为(6,1).(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)∴S△OCD=S△BOE﹣S△BOD﹣S△OCE答:△OCD的面积为.【题目点拨】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.24、(1);(2)m的值为1.【解题分析】

(1)根据题意得出△>0,代入求出即可;

(2)求出m=1,2或1,代入后求出方程的解,即可得出答案.【题目详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论