上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题含解析_第1页
上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题含解析_第2页
上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题含解析_第3页
上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题含解析_第4页
上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市民办新竹园中学2024届数学八年级第二学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.2.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形3.一个正多边形的内角和为,则这个正多边形的每一个外角的度数是()A. B. C. D.4.如图,平行四边形ABCD的对角线AC、BD相较于点O,EF过点O,且与AD、BC分别相交于E、F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.105.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁6.关于x的方程m-1x-1A.2 B.﹣2 C.1 D.﹣17.px2-3x+p2A.p=1 B.p>0 C.p≠0 D.p为任意实数8.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分9.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在()A.x轴上 B.第三象限 C.y轴上 D.第四象限10.若有意义,则m能取的最小整数值是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.12.若三角形的三边a,b,c满足,则该三角形的三个内角的度分别为____________.13.如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.14.如果的平方根是,则_________15.若有意义,则m能取的最小整数值是__.16.如图矩形ABCD中,AD=2,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.17.已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.18.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据函数图象回答:方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.三、解答题(共66分)19.(10分)如图①,在正方形ABCD中,,点E,F分别在BC、CD上,,试探究面积的最小值。下面是小丽的探究过程:(1)延长EB至G,使,连接AG,可以证明.请完成她的证明;(2)设,,①结合(1)中结论,通过计算得到与x的部分对应值。请求出表格中a的值:(写出解答过程)x112345678911118.186.675.384.293.33a1.761.111.531②利用上表和(1)中的结论通过描点、连线可以分别画出函数、的图像、请在图②中完善她的画图;③根据以上探究,估计面积的最小值约为(结果估计到1.1)。图①图②20.(6分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.(1)求证:△CEF≌△AEF;(2)联结DE,当BD=2CD时,求证:AD=2DE.21.(6分)如图,直线分别与轴、轴交于两点,与直线交于点.(1)点坐标为(,),B为(,).(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.22.(8分)已知函数,(1)当m取何值时抛物线开口向上?(2)当m为何值时函数图像与x轴有两个交点?(3)当m为何值时函数图像与x轴只有一个交点?23.(8分)在面积都相等的所有三角形中,当其中一个三角形的一边长为时,这条边上的高为.(1)①求关于的函数表达式;②当时,求的取值范围;(2)小李说其中有一个三角形的一边与这边上的高之和为小赵说有一个三角形的一边与这边上的高之和为.你认为小李和小赵的说法对吗?为什么?24.(8分)某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,学校应如何购买更优惠?25.(10分)先化简、再求值:,其中26.(10分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

根据高线的定义即可得出结论.【题目详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【题目点拨】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.2、C【解题分析】

A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正确;B.在平行四边形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正确;C..当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°无法求出,故C错误;D.同理可证△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等边三角形,故D正确;故选C.点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.3、A【解题分析】

根据多边形的内角和公式求出边数,从而求得每一个外角的度数.【题目详解】多边形的内角和为,即解得:∴该多边形为正八边形∴正八边形的每一个外角为:故选:A【题目点拨】本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.4、C【解题分析】

根据平行四边形的对边相等得:CD=AB=4,AD=BC=5,再根据平行四边形的性质和对顶角相等可以证明△AOE≌△COF,从而求出四边形EFCD的周长即可.【题目详解】∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AOE=∠COF,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12,故选C.【题目点拨】根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.5、A【解题分析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、A【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【题目详解】方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=1.故选:A.【题目点拨】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值7、C【解题分析】

一元二次方程的二次项系数不为1.【题目详解】∵方程px2-3x+∴二次项系数p≠1,故选C.【题目点拨】此题考查一元二次方程的定义,解题关键在于掌握其定义.8、D【解题分析】试题分析:利用加权平均数的公式直接计算即可得出答案.由加权平均数的公式可知===86考点:加权平均数.9、D【解题分析】

让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.【题目详解】∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.故选D.【题目点拨】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.10、C【解题分析】

根据二次根式的性质,被开方数大于等于0,即可求解.【题目详解】由有意义,则满足1m-3≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选C.【题目点拨】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题(每小题3分,共24分)11、1【解题分析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.12、45°,45°,90°.【解题分析】

根据勾股定理的逆定理可知这个三角形是直角三角形,然后根据等腰三角形的判定得到这个三角形是等腰直角三角形,于是角度可求.【题目详解】解:∵三角形的三边满足,

∴设a=k,b=k,c=k,

∴a=b,

∴这个三角形是等腰三角形,

∵a2+b2=k2+k2=2k2=(k)2=c2,

∴这个三角形是直角三角形,

∴这个三角形是等腰直角三角形,

∴三个内角的度数分别为:45°,45°,90°.

故答案为:45°,45°,90°.【题目点拨】本题考查了等腰直角三角形的判定和性质,勾股定理的逆定理的运用,熟记勾股定理的逆定理是解题的关键.13、10【解题分析】

连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.【题目详解】连接AD,∵,点为边的中点,∴AD⊥BC,∵,的面积是,∴AD=16×2÷4=8,∵EF是AC的垂直平分线,∴点C关于直线EF的对称点为A,∴AD的长为CM+MD的最小值,∴周长的最小值为AD+CD=8+BC=8+2=10.故填:10.【题目点拨】此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.14、81【解题分析】

根据平方根的定义即可求解.【题目详解】∵9的平方根为,∴=9,所以a=81【题目点拨】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、1【解题分析】

根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.【题目详解】∵若有意义∴3m﹣1≥0,解得m≥故m能取的最小整数值是1【题目点拨】本题考查了二次根式的意义以及不等式的特殊解等相关问题.16、6【解题分析】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF-∠BAF=30°,在Rt△ABC中,AC=2BC=2AD=22,由勾股定理,AB=AB【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.17、-2【解题分析】

利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.【题目详解】解:依题意得:x1+x1=-m,x1x1=-1.所以x1+x1-x1x1=-m-(-1)=6所以m=-2.故答案是:-2.【题目点拨】此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-ba,x1•x1=c18、(1)见解析;(2)x=2,<1,2≤x≤1【解题分析】

(1)列表,描点,连线即可;

(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.【题目详解】(1)列表:x20y=﹣2x+101描点,连线可得:(2)根据函数图象可得:当y=0时,x=2,故方程﹣2x+1=0的解是x=2;当x<1时,y>2;当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.故答案为:x=2;<1;2≤x≤1.【题目点拨】本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.三、解答题(共66分)19、(1)见解析;(2)①,②见解析;③41.4或41.5.【解题分析】

(1)AB=AD,BG=DF,则AG=AF,∠DAF+∠BAE=91°-∠EAF=45°=∠EAF,AF=AG,AE=AE,则△AFE≌△AGE(SAS),即可求解;

(2)①∵CE=BC-6=4,设DF=a,CF=11-a,EF=DF+BE=6+a,由勾股定理即可求解;②由①得:y2=y1+x,描点画图即可;

(3)利用分割法即可得出.【题目详解】(1)证明:如图①,延长EB至G,使,连接AG.四边形ABCD是正方形,,,,,,,,,,,,,,,,.(2)①在中,,,,解这个方程,得.②如图②所示.③S△AEF=SABCD-S△ADF-S△ABE-S△EFC=111---=111-(DF+BE)11-=111-EF11-=111-5y2-(11-x)(11-y1)=51-xy1当x=4,y1=4.29时,S△AEF最小S△AEF=51-×4×.29≈41.4或41.5.图①图②【题目点拨】本题为四边形综合题,涉及到三角形全等、函数作图,此类题目通常在作图的基础上,从图表查阅符合条件的数据点,进而求解.20、(1)见解析;(2)见解析.【解题分析】

(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;

(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.【题目详解】证明:(1)∵∠ACB=90°,且E线段AB中点,∴CE=AB=AE,∵∠ACD=90°,F为线段AD中点,∴AF=CF=AD,在△CEF和△AEF中,,∴△CEF≌△AEF(SSS);(2)连接DE,∵点E、F分别是线段AB、AD中点,∴EF=BD,EF∥BC,∵BD=2CD,∴EF=CD.又∵EF∥BC,∴四边形CFEDD是平行四边形,∴DE=CF,∵CF=AF=FD,∴AD=2DE.【题目点拨】此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21、(1)点的坐标是,点的坐标是;(2);(3)符合条件的点坐标为【解题分析】

(1)先将点C坐标代入直线l1中,求出直线l1的解析式,令x=0和y=0,即可得出结论;

(2)先求出直线l2的解析式,表示出点E,F的坐标,在判断出OB=EF,建立方程求解,即可得出结论;

(3)先求出点P的坐标,分两种情况求出直线PQ,AQ的解析式,即可得出结论.【题目详解】解:(1)∵点C(2,)在直线l1:上,

∴,

∴直线l1的解析式为,令x=0,∴y=3,∴B(0,3),

令y=0,∴,∴x=4,∴A(4,0),

故答案为:点的坐标是,点的坐标是.(2)∵轴,点的横坐标为,∴点的横坐标也为,∵直线与直线交于点∵点是直线的一点,∴点E的坐标是,∵点是直线上的一点,∴点的坐标是∵当(3)若点为轴正半轴上一点,,,∴,.当时直线AB的解析式为:直线PQ的解析式为∴点的坐标是当时直线BP的解析式为,直线AQ的解析式为∴点的坐标是综上,在平面直角坐标系中存在点,使得四个点能构成一个梯形,符合条件的点坐标为【题目点拨】此题是一次函数综合题,主要考查了待定系数法,平行四边形的性质,三角形的面积公式,利用方程的思想解决问题是解本题的关键.22、(1);(2)且;(3)或【解题分析】

(1)开口方向向上,即m-1>0,然后求解即可;(2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;(3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论