2024届长春市二道区八年级数学第二学期期末复习检测试题含解析_第1页
2024届长春市二道区八年级数学第二学期期末复习检测试题含解析_第2页
2024届长春市二道区八年级数学第二学期期末复习检测试题含解析_第3页
2024届长春市二道区八年级数学第二学期期末复习检测试题含解析_第4页
2024届长春市二道区八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届长春市二道区八年级数学第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:①;②;③;④.其中结论正确的序号是()A.①②③ B.①②④ C.①③④ D.②③④2.计算:()A.5 B.7 C.-5 D.-73.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.64.甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是,.,在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.无法确定5.如图,、分别是平行四边形的边、上的点,且,分别交、于点、.下列结论:①四边形是平行四边形;②;③;④,其中正确的个数是()A.1个 B.2个C.3个 D.4个6.如图,在中,分别是边的中点.已知,则四边形的周长为()A. B. C. D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.若二次根式有意义,则x应满足()A.x≥3 B.x≥﹣3 C.x>3 D.x>﹣39.已知四边形是平行四边形,下列结论中不正确的是()A.当时,它是菱形 B.当时,它是菱形C.当时,它是矩形 D.当时,它是正方形10.如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为(A.140° B.120° C.110二、填空题(每小题3分,共24分)11.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是_____cm.12.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为,阴影三角形部分的面积从左向右依次记为、、、、,则的值为______用含n的代数式表示,n为正整数13.已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.14.不等式的正整数解有________个.15.直线y=3x向下平移2个单位后得到的直线解析式为______.16.已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.17.小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______18.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)三、解答题(共66分)19.(10分)某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)条形图中存在错误的类型是,人数应该为人;(2)写出这20名学生每人植树量的众数棵,中位数棵;(3)估计这300名学生共植树棵.20.(6分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.(1)求证:.(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.21.(6分)阅读材料:在实数范围内,当且时,我们由非负数的性质知道,所以,即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值.则有最小值:请问:若,则当取何值时,代数式取最小值?最小值是多少?22.(8分)如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接,且①求证:与互相平分;②求证:;(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当,,时,求之长.23.(8分)计算(1)(2)24.(8分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.25.(10分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.26.(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点,点和直线.(1)在直线上求作一点,使最短;(2)请在直线上任取一点(点与点不重合),连接和,试说明.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【题目详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a-)2=4,解得a,则a2=2+,S正方形ABCD=2+,④说法正确,∴①②④正确.故选B.【题目点拨】题主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,以及勾股定理等知识,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.2、A【解题分析】

先利用二次根式的性质进行化简,然后再进行减法运算即可.【题目详解】=6-1=5,故选A.【题目点拨】本题考查了二次根式的化简,熟练掌握是解题的关键.3、A【解题分析】

由众数的定义,求出其中出现次数最多的数即可.【题目详解】∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,

∴众数是1.

故选:A.【题目点拨】考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.4、B【解题分析】

根据方差的定义,方差越小数据越稳定.【题目详解】解:∵S甲2=0.61,S乙2=0.35,S丙2=1.13,∴S丙2>S甲2>S乙2,∴在本次射击测试中,成绩最稳定的是乙;故选:B.【题目点拨】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【解题分析】

根据平行四边形的性质即可判断.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,又,∴四边形是平行四边形①正确;∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,∴,②正确;∴EG=FH,故BE-EG=DF-FH,故,③正确;∵,∴,故④正确故选D.【题目点拨】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质与全等三角形的判定与性质.6、C【解题分析】

根据三角形中位线定理、线段中点的定义解答.【题目详解】解:∵D,E分别是边BC,CA的中点,∴DE=AB=2,AF=AB=2,∵D,F分别是边BC,AB的中点,∴DF=AC=3,AE=AC=3,∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,故选:C.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7、C【解题分析】

先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【题目详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.【题目点拨】此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.8、B【解题分析】

根据二次根式有意义的条件得到:x+2≥1.【题目详解】解:由题意知,x+2≥1.解得x≥﹣2.故选:B.【题目点拨】本题考查了二次根式有意义的条件.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9、D【解题分析】

根据特殊平行四边形的判定方法判断即可.【题目详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【题目点拨】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.10、C【解题分析】

根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【题目详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,故选:C.【题目点拨】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.二、填空题(每小题3分,共24分)11、10【解题分析】试题分析:根据角平分线的性质可得:CD=DE,△ACD和△AED全等,则AE=AC,根据AC=BC可知AE=BC,则△DEB的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB=10cm.12、【解题分析】

由题意可知Sn是第2n个正方形和第(2n-1)个正方形之间的阴影部分,先由已知条件分别求出图中第1个、第2个、第3个和第4个正方形的边长,并由此计算出S1、S2,并分析得到Sn与n间的关系,这样即可把Sn给表达出来了.【题目详解】∵函数y=x与x轴的夹角为45°,

∴直线y=x与正方形的边围成的三角形是等腰直角三角形,

∵A(8,4),

∴第四个正方形的边长为8,

第三个正方形的边长为4,

第二个正方形的边长为2,

第一个正方形的边长为1,

…,

第n个正方形的边长为,第(n-1)个正方形的边长为,

由图可知,S1=,S2=,…,由此可知Sn=第(2n-1)个正方形面积的一半,∵第(2n-1)个正方形的边长为,∴Sn=.

故答案为:.【题目点拨】通过观察、计算、分析得到:“(1)第n个正方形的边长为;(2)Sn=第(2n-1)个正方形面积的一半.”是正确解答本题的关键.13、【解题分析】

由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.【题目详解】∵1160°÷180°=6…80°,又∵100°+80°=180°,∴这个内角度数为100°,故答案为:100°.【题目点拨】本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.14、4【解题分析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【题目详解】解:解得:不等式的解集是,故不等式的正整数解为1,2,3,4,共4个.故答案为:4.【题目点拨】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15、y=3x-1【解题分析】

直接利用一次函数图象的平移规律“上加下减”即可得出答案.【题目详解】直线y=3x沿y轴向下平移1个单位,则平移后直线解析式为:y=3x-1,故答案为:y=3x-1.【题目点拨】本题主要考查一次函数的平移,掌握平移规律是解题的关键.16、1【解题分析】

分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.【题目详解】解:当m=1时,原方程为2x+1=1,解得:x=﹣,∴m=1符合题意;当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,解得:m≤且m≠1.综上所述:m≤.故答案为:1.【题目点拨】本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.17、金额与数量【解题分析】

根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.【题目详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故答案为:金额与数量.【题目点拨】本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.18、甲.【解题分析】试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.考点:方差.三、解答题(共66分)19、(1)D,2;(2)5,5;(3)1.【解题分析】

(1)利用总人数乘对应的百分比求解即可;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数300即可.【题目详解】(1)D错误,理由:20×10%=2≠3;故答案为:D,2;(2)由题意可知,植树5棵人数最多,故众数为5,共有20人植树,其中位数是第10、11人植树数量的平均数,即(5+5)=5,故中位数为5;故答案为:5,5;(3)(4×4+5×8+6×6+7×2)÷20=5.3,∴300名学生共植树5.3×300=1(棵).故答案为:1.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)证明见解析;(2).【解题分析】

(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.【题目详解】(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.∵CF=3,BF=1,∴BE=BC=.设CO=x,则FO=BO-BF=x-1.在Rt△CFO中,∵,∴,解得:x=7.5,∴BO+OG=BD=2x=2.∵OG=CO,OF⊥CG,∴FG=CF=3.∵CB=BE,∴BF为△CEG的中位线,∴EG=2BF=3,∴四边形BOGE的周长=BO+OG+EG+EB=2+3+=.【题目点拨】本题考查了平行四边形的判定与性质,矩形的性质,直角三角形斜边上的中线等于斜边的一半以及三角形中位线定理,熟记各性质并利用勾股定理列出方程是解题的关键.21、x=2时,最小值是1.【解题分析】

先提公因式,再根据“均值不等式”的性质计算.【题目详解】根据题意得:x=,

解得,x1=2,x2=-2(舍去),

则当x=2时,代数式2x+取最小值,最小值是1.【题目点拨】本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.22、(1)①详见解析;②详见解析;(1)当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由详见解析;(3)【解题分析】

(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(1)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;(3)过P作PE⊥PD,过B作BELPE于E,根据(1)的结论求出PE,结合图形解答.【题目详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE1+OE1=OB1.∴(BE+DF)1+EF1=(1BE)1+(1OE)1=4(BE1+OE1)=4OB1=(1OB)1=BD1.在正方形ABCD中,AB=AD,BD1=AB1+AD1=1AB1.∴(BE+DF)1+EF1=1AB1;(1)解:当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由如下:如图1,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM1+DM1=BD1,∴(BE+EM)1+DM1=BD1.即(BE+DF)1+EF1=1AB1;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)1+PE1=1AB1.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP=BE,∵BP+1PD=4,∴1BE+1PD=4,即BE+PD=1,∵AB=4,∴(1)1+PE1=1×41,解得,PE=1,∴BE=1,∴PD=1﹣1.【题目点拨】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.23、(1)(2)【解题分析】

(1)先化成最简二次根式,再合并同类二次根式即可;(2)根据多项式除以单项式法则展开,再进行计算即可.【题目详解】解:(1)原式==(2)原式==【题目点拨】本题考查了二次根式的加减混合运算的应用,主要考查学生的计算能力.24、(1)证明见解析;(2)证明见解析【解题分析】

(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论