2024届福建省闽侯县数学八年级第二学期期末达标检测试题含解析_第1页
2024届福建省闽侯县数学八年级第二学期期末达标检测试题含解析_第2页
2024届福建省闽侯县数学八年级第二学期期末达标检测试题含解析_第3页
2024届福建省闽侯县数学八年级第二学期期末达标检测试题含解析_第4页
2024届福建省闽侯县数学八年级第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省闽侯县数学八年级第二学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙2.在中,斜边,则的值为()A.6 B.9 C.18 D.363.下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分C.平行四边形的对角相等D.平行四边形的对边相等4.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20 B.10 C.10 D.285.根据天气预报,2018年6月20日双流区最高气温是,最低气温是,则双流区气温的变化范围是()A. B. C. D.6.的计算结果是()A.3 B.9 C.6 D.27.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为()A.6 B.8 C.4 D.8.用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b9.在数轴上与原点的距离小于8的点对应的x满足()A.x<8 B.x>8 C.x<-8或x>8 D.-8<x<810.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()A. B. C.1 D.﹣111.下列式子中,属于最简二次根式的是A. B. C. D.12.若x、y都是实数,且,则xy的值为A.0 B. C.2 D.不能确定二、填空题(每题4分,共24分)13.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.14.若关于x的方程+=0有增根,则m的值是_____.15.一组数据2,3,4,5,3的众数为__________.16.如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.17.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)18.如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.三、解答题(共78分)19.(8分)如图①,正方形ABCD中,点E、F都在AD边上,且AE=FD,分别连接BE、FC,对角线BD交FC于点P,连接AP,交BE于点G;(1)试判断AP与BE的位置关系;(2)如图②,再过点P作PH⊥AP,交BC于点H,连接AH,分别交BE、BD于点N,M,请直接写出图②中有哪些等腰三角形.20.(8分)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.21.(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.22.(10分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由.23.(10分)(1)计算并观察下列各式:第个:;第个:;第个:;······这些等式反映出多项式乘法的某种运算规律.(2)猜想:若为大于的正整数,则;(3)利用(2)的猜想计算;(4)拓广与应用.24.(10分)(1)分解因式:(2)解不等式组25.(12分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.26.如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.(1)当在点的右侧时,求证:四边形是平形四边形.(2)连结,当四边形恰为矩形时,求的长.(3)如图2,设,,记点与之间的距离为,直接写出的所有值.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【解题分析】

根据勾股定理即可求解.【题目详解】在Rt△ABC中,AB为斜边,∴==9∴=2=18故选C.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.3、A【解题分析】∵平行四边形的对边相等、对角相等、对角线互相平分,∴B、C、D说法正确;只有矩形的对角线才相等,故A说法错误,故选A.4、C【解题分析】

过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.【题目详解】如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2-BD2=AC2-CD2=AD2,∴52-BD2=72-(8-BD)2,解得:BD=,∴AD=,∴△ABC的面积=10,故选C.【题目点拨】本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.5、D【解题分析】

根据题意列出不等式即可求出答案.【题目详解】解:由于最高气温是30℃,最低气温是23℃,∴23≤t≤30,故选:D.【题目点拨】本题考查不等式,解题的关键是正确理解不等式的定义,本题属于基础题型.6、A【解题分析】

求出的结果,即可选出答案.【题目详解】解:=3,故选:A.【题目点拨】本题考查了二次根式的性质的应用,注意:.7、A【解题分析】

根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.【题目详解】解:∵D、E分别为AB和AC的中点,∴DE=BC=4,∵EF=DF,DE+EF=DF,∴DF=6,∴选A.【题目点拨】本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.8、A【解题分析】

熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.【题目详解】用反证法证明“a>b”时,应先假设a≤b.故选:A.【题目点拨】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.9、D【解题分析】

解:数轴上对应x的点到原点的距离可表示为|x|.由题意可知解得故选D.10、D【解题分析】

连接CC′,AE,延长AE交CC′于F,由正方形性质可证明△ADE≌△AEB′,所以DE=B′E,根据∠BAB′=30°可知∠DAE=∠EAB′=30°,即可求出DE的长度,进而求出CE的长度,根据∠FEC=60°可知CF的长度,即可求出CC′的长度.【题目详解】连接CC′,AE,延长AE交CC′于F,∵正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,∴AD=AB′,∠ADE=∠AB′E=90°,AE=AE,∴△ADE≌△AEB′,∴∠DAE=∠EAB′,∵旋转角为30°,∴∠BAB′=30°,∴∠DAB′=60°,∴∠DAE=∠EAB′=30°,∴AE=2DE,∴AD2+DE2=(2DE)2,∴DE=,∴CE=1-,∵DE=EB′∴EC=EC′,∵∠DEA=∠AEB′=60°,∴∠FEC′=∠FEC=60°,∴∠FCE=30°,∴△FEC≌△FEC′,∴CF=FC′,∴EF⊥CC′,∴EF=CE=,∴CF==,∴CC′=2CF=,故选D.【题目点拨】本题考查旋转的性质,找出旋转后的边、角的对应等量关系是解题关键.11、B【解题分析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.∵,∴属于最简二次根式.故选B.12、C【解题分析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾且x⩽,∴x=,y=4,∴xy=×4=2.故答案为C.二、填空题(每题4分,共24分)13、【解题分析】分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=cm.故答案为.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.14、3【解题分析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【题目详解】去分母得:2﹣x+m=0,解得:x=2+m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入得:m=3,故答案为:3【题目点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15、1.【解题分析】

众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【题目详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【题目点拨】众数是指一组数据中出现次数最多的数据.16、(2,−2)或(6,2).【解题分析】

设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【题目详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).【题目点拨】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.17、不公平.【解题分析】试题分析:先根据题意画出树状图,然后根据概率公式求解即可.画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是所以这个游戏不公平.考点:游戏公平性的判断点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.18、【解题分析】

如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【题目详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.

∵∠FNC=∠MCN=∠FMC=90°,

∴四边形CMFN是矩形,

∴∠MFN=∠AFE=90°,

∴∠AFN=∠MFE,

∵AF=FE,∠FNA=∠FME=90°,

∴△FNA≌△FME(AAS),

∴FM=FM,AN=EM,

∴四边形CMFN是正方形,

∴CN=CM,CF=CM,∠FCN=∠FCM=45°,

∵AC+CE=CN+AN+CM-EM=2CM,

∴CF=(AC+CE).

∴点F在射线CF上运动(CF是∠ACB的角平分线),

当点E与D重合时,CF=(AC+CD)=2,

当点E与B重合时,CF=(AC+CB)=,

∵-2=,

∴点F的运动的路径长为.

故答案为:.【题目点拨】此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.三、解答题(共78分)19、(1)垂直,理由见解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC是等腰△.【解题分析】

(1)由题意可证△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通过角的换算可证AP⊥BE.(2)根据正方形的性质可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四点共圆,可证△APH,△PHC是等腰△【题目详解】(1)垂直,理由是∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,∴△ADP≌△CDP,∴∠DCF=∠DAP,AP=PC又AE=DF,∠BAD=∠CDA=90°,AB=CD,∴△ABE≌△DCF,∴∠ABE=∠DCF,∴∠ABE=∠DAP∵∠ABE+∠AEB=90°,∴∠DAP+∠AEB=90°,即∠AGE=90°,∴AP⊥BE(2)∵AB=BC=CD=DA∴△ABD,△BCD是等腰△∵AP⊥PH,∠ABC=90°∴A,B,H,P四点共圆∴∠PAH=∠DBC=45°∴∠PAH=∠PHA=45°∴PA=PH∴△APH是等腰△∵AP=PH,AP=PC,∴PC=PH∴△PHC是等腰△.【题目点拨】本题考查了正方形的性质,全等三角形的性质和判定,关键是利用这些性质解决问题.20、(1)见解析;(2)见解析【解题分析】

(1)根据AE2=EB•EC证明△AEB∽△CEA,即可得到∠EBA=∠EAC=90°,从而说明平行四边形ABCD是矩形;(2)根据(1)中△AEB∽△CEA可得,再证明△EBF∽△BAF可得,结合条件AF=AC,即可证AE=BF.【题目详解】证明:(1)∵AE2=EB•EC∴又∵∠AEB=∠CEA∴△AEB∽△CEA∴∠EBA=∠EAC而∠EAC=90°∴∠EBA=∠EAC=90°又∵∠EBA+∠CBA=180°∴∠CBA=90°而四边形ABCD是平行四边形∴四边形ABCD是矩形即得证.(2)∵△AEB∽△CEA∴即,∠EAB=∠ECA∵四边形ABCD是矩形∴OB=OC∴∠OBC=∠ECA∴∠EBF=∠OBC=∠ECA=∠EAB即∠EBF=∠EAB又∵∠F=∠F∴△EBF∽△BAF∴∴而AF=AC∴BF=AE即AE=BF得证.【题目点拨】本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.21、(1)A(,0),B(0,3);(2)或.【解题分析】分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;

(2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则,由此求得的面积.详解:(1)令y=0,得∴A点坐标为令x=0,得y=3,∴B点坐标为(0,3);∵∴或∴AP=或,∴,或.点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.22、(1)A船:,B船:;(2)能追上;此时离海岸的距离为海里.【解题分析】

(1)根据函数图象中的数据用待定系数法即可求出,的函数关系式;(2)根据(2)中的函数关系式求其函数图象交点可以解答本题.【题目详解】解:(1)由题意,设.∵在此函数图像上,∴,解得,由题意,设.∵,在此函数图像上,∴.解得,.∴.(2)由题意,得,解得.∵,∴能追上.此时离海岸的距离为海里.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23、(1)、、;(2);(3);(4)【解题分析】

(1)根据多项式乘多项式的乘法计算可得;

(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;

(3)将原式变形为,再利用所得规律计算可得;

(4)将原式变形为,再利用所得规律计算可得.【题目详解】(1)第1个:;

第2个:;

第3个:;

故答案为:、、;(2)若n为大于1的正整数,则,

故答案为:;

(3),

故答案为:;

(4),

故答案为:.【题目点拨】本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.24、(1);(2).【解题分析】

(1)根据平方差公式因式分解即可;(2)根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集即可.【题目详解】解:(1)原式.(2)解不等式①,得,解不等式②,得.所以,原不等式组的解集是.【题目点拨】此题考查的是因式分解和解不等式组,掌握利用平方差公式因式分解和不等式的基本性质是解决此题的关键.25、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解题分析】

(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【题目详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论