版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省滁州市民办高中高考全国统考预测密卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.82.函数(或)的图象大致是()A. B. C. D.3.双曲线的渐近线方程为()A. B.C. D.4.已知集合,,则等于()A. B. C. D.5.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.6.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.7.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能8.在中,角、、的对边分别为、、,若,,,则()A. B. C. D.9.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.10.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.12.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.16.已知,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.18.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.19.(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.20.(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.21.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.22.(10分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.2、A【解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.3、A【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.4、B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.5、A【解析】
根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.6、D【解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.7、B【解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.8、B【解析】
利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.9、D【解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.11、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.12、B【解析】
由题意知,,由,知,由此能求出.【详解】由题意知,,,解得,,.故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13、③④【解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.14、【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.15、【解析】
先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.16、【解析】
先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.18、(1)时,有一个零点;当且时,有两个零点;(2)见解析【解析】
(1)利用的导函数,求得的最大值的表达式,对进行分类讨论,由此判断出的零点的个数.(2)由,得到和,构造函数,利用导数证得,即有,从而证得,即.【详解】(1),∴当时,,当时,在上递增,在上递减,.令在上递减,在上递增,,当且仅当时取等号.①时,有一个零点;②时,,此时有两个零点;③时,,令在上递增,,此时有两个零点;综上:时,有一个零点;当且时,有两个零点;(2)由(1)可知:,令在上递增,.【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.19、(1);(2)【解析】
(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题20、(1)见解析(2).【解析】
(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,,,,分别为边,,,,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.21、(Ⅰ);(Ⅱ)【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【详解】(I)因为,所以,,,或,或,因为,所以所以;(Ⅱ)由余弦定理得:,所以,所以,当且仅当取等号,又因为,所以,所以【点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.22、(1)见解析;(II).【解析】
试题分析:(1)取中点,连结,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能证明为直角三角形;(2)设,由,得,求出平面的法向量和平面的法向量,,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租房屋协议模板范本
- 2025女方离婚协议书
- 运动障碍性脑瘫病因介绍
- 表皮囊肿病因介绍
- 质量策划方案20241219
- (案例)标准件项目立项报告
- (2024)冷渣器生产建设项目可行性研究报告(一)
- 2022-2023学年天津市高一(上)期末语文试卷
- 2022-2023学年天津四中高二(上)期末语文试卷
- 重庆2020-2024年中考英语5年真题回-学生版-专题07 阅读理解之说明文
- 足部健康宣教课件
- 生产准备部进出口报关员关键业绩考核指标(KPI)
- TSZSA 032-2023 SMD 塑料载带技术规范
- 应用文写作《通知》课件 2023-2024学年高教版中职语文基础模块下册
- 车险续保率分析报告
- 基于Android的天气预报系统的设计与实现
- 省级代理合同
- 精神科患者饮食健康宣教知识
- 乡村小学劳动课校本教材
- 汽车行业培训资料-2024年自动驾驶技术和智能交通系统
- 皮肤科常见病学习课件
评论
0/150
提交评论