




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市瑶海区2024届数学七下期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各选项的结果表示的数中,不是无理数的是()A.如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,点A表示的数B.5的算术平方根C.9的立方根D.2.下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵3.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形 B.七边形 C.八边形 D.九边形4.如图,点B,E,C,F在同一直线上,BE=CF,∠B=∠F,再添加一个条件仍不能证明ΔABCΔDFE的是()A.AB=DF B.∠A=∠D C.AC//DE D.AC=DE5.已知点A(-1,0),点B(2,0),在y轴上存在一点C,使△ABC的面积为6,则点C的坐标为()A.(0,4) B.(0,2) C.(0,2)或(0,-2) D.(0,4)或(0,-4)6.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.227.若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3 B.3 C.5 D.78.方程组的解为,则被遮盖的、的两个数分别为()A.1,2 B.1,3 C.2,3 D.4,29.多项式a2-9与a2-3a的公因式是()A.a+3 B.a-3 C.a+1 D.a-110.下列调查中,你认为选择调查方式最合适的是()A.了解合肥市七年级学生的身高情况,采用抽样调查方式B.了解端午节期间市场粽子质量情况,采用全面调查方式C.合肥新桥机场旅客上飞机进行安检,采用抽样调查方式D.检测一批日光灯管的使用寿命情况,采用全面调查方式二、填空题(本大题共有6小题,每小题3分,共18分)11.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.12.因式分解=______.13.二元一次方程2x+3y=25的正整数解有_____组.14.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=1.则BE的长度是.15.当_____时,关于的分式方程会产生增根.16.在平面直角坐标系中,点是轴上一点,则点的坐标为______.三、解下列各题(本大题共8小题,共72分)17.(8分)某商场销售A,B两种品牌的多媒体教学设备,这两种多媒体教学设备的进价和售价如表所示.(1)若该商场计划购进两种多媒体教学设备若干套,共需124万元,全部销售后可获毛利润36万元.则该商场计划购进A,B两种品牌的多媒体教学设备各多少套?(2)通过市场调研,该商场决定在(1)中所购总数量不变的基础上,减少A种设备的购进数量,增加B种设备的购进数量.若用于购进这两种多媒体教学设备的总资金不超过120万元,且全部销售后可获毛利润不少于33.6万元.问有几种购买方案?并写出购买方案.18.(8分)如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以___∥___().又因为AC⊥AE(已知),所以∠EAC=90°()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=__°.所以∠EAB=∠FBG().所以___∥___(同位角相等,两直线平行).19.(8分)如图,已知点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE,说明△ABC与△DEF全等的理由.20.(8分)已知.(1)如图1,、分别平分、.试说明:;(2)如图2,若,,、分别平分、,那么º(只要直接填上正确结论即可).21.(8分)完成下面(1)(2)的画图,回答问题(3)(4),如图,P是∠AOB的边OA上一点.(1)过点P画OB的垂线,垂足为H;(2)过点P画OA的垂线,交OB于点C;(3)点O到直线PC的距离是线段_______的长度;(4)把线段OP、PH和OC按从小到大用“<”连接:_________;理由是_____________.22.(10分)如图,已知A(3,1),B(-2,3),线段AB与y轴相交于点C.(1)求△AOB的面积;(2)求点C的坐标;(3)请直接写出直线AB与x轴的交点坐标.23.(10分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).分组频数占比1000≤x<200037.5%2000≤x<3000512.5%3000≤x<4000a30%4000≤x<5000820%5000≤x<6000bc6000≤x<7000410%合计40100%(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.24.(12分)如图,画图并解答:(1)画的平分线交AB于点D,过点D作BC的平行线DE交AC于点E;(2)如果,,求与的度数.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
将四个选项都计算出来,再由无理数是无限不循环小数进行判断.【题目详解】因为=12,12是有理数,不是无理数.故选D【题目点拨】本题考察什么是无理数,同时也考查了数的开方运算,能正确进行数的开方是解题的关键.2、A【解题分析】
根据“抽样调查和全面调查各自的特点和适用范围”进行分析判断即可.【题目详解】A选项中,调查“神州十一号”飞船重要零部件的产品质量应该使用“全面调查”,不适合用“抽样调查”;B选项中,调查某电视剧的收视率适用适用“抽样调查”;C选项中,调查一批炮弹的杀伤力适合使用“抽样调查”;D选项中,调查一片森林的树木有多少棵适合使用“抽样调查”.故选A.【题目点拨】熟悉“抽样调查和全面调查各自的特点”是解答本题的关键.3、A【解题分析】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.4、D【解题分析】
根据全等三角形的判定定理进行解答.【题目详解】解:由BE=CF得到:BC=FE.
A、由条件BC=FE,∠B=∠F添加AB=DF,根据全等三角形的判定定理SAS能证明△ABC≌△DFE,故本选项错误;
B、由条件BC=FE,∠B=∠F添加∠A=∠D,根据全等三角形的判定定理AAS能证明△ABC≌△DFE,故本选项错误;
C、因为AC∥DE,所以∠ACB=∠DEF,再由条件BC=FE,∠B=∠F,根据全等三角形的判定定理ASA能证明△ABC≌△DFE,故本选项错误;
D、由条件BC=FE,∠B=∠F添加AC=DE,由SSA不能证明△ABC≌△DFE,故本选项正确.
故选:D.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、D【解题分析】设点C的坐标是(0,y),因为点A(-1,0)点B(2,0),所以AB=3,由因为三角形ABC的面积为6,所以,计算出,,所以点C的坐标是(0,4)或(0,-4),故选D.6、B【解题分析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【题目详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【题目点拨】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.7、C【解题分析】
将x=2代入ax4+bx2+5使其值为5,可得16a+8b的值,在将x=﹣2代入ax4+bx2+5,可求得ax4+bx2+7.【题目详解】解:当x=2时,代数式ax4+bx2+5的值是3,即:16a+4b+5=3,可得16a+4b=-2,当x=﹣2时,代数式ax4+bx2+7=16a+4b+7=-2+7=5,故选C.【题目点拨】本题主要考查代数式求值,注意运算的准确性.8、D【解题分析】试题分析:将x=1代入②得:1+y=3,解得:y=2;将x=1,y=2代入①得:2+2=4.考点:二元一次方程组.9、B【解题分析】a2-9=,a2-3a=,故选B.10、A【解题分析】
根据题中的“调查方式”可知,本题考查的是数据收集中的合适调查方式,通过理解全面调查和抽样调查的概念,进行判断选择.【题目详解】A.选项中“合肥市”表明调查对象庞大,且身高情况没必要一一调查,所以选择抽样调查,B.选项中“市场”表明调查对象庞大,且粽子质量没必要一一调查,所以选择抽样调查,C.选项中“新桥机场进行安检”表明调查对象较少,且安检是有必要一一调查,所以选择全面调查,D.选项中“一批”表明调查对象庞大,且灯管的使用寿命没必要一一调查,所以选择抽样调查,故应选A.【题目点拨】本题解题关键:理解两种调查方式的含义,①对总体中每个个体全都进行调查,像这种调查方式叫做全面调查.②当不必要或不可能对某一总体进行全面调查时,我们只要从总体中抽取一部分个体进行调查,然后根据调查数据来推断总体的情况,这种调查方式称为抽样调查.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【解题分析】试题分析:根据定义,α=1000,β=500,则根据三角形内角和等于1800,可得另一角为1,因此,这个“特征三角形”的最小内角的度数为1.12、.【解题分析】解:==,故答案为:.13、4.【解题分析】
先用x的代数式表示y,得y=,再根据x、y均为正整数且-2x+25是3的倍数展开讨论即可求解.【题目详解】解:方程变形得:y=,当x=2时,y=7;x=5时,y=5;x=8时,y=3;x=11时,y=1,则方程的正整数解有4组,故答案为:4.【题目点拨】二元一次方程有无数组解,但它的正整数解是有限的,此类题目一般是用其中一个未知数表示另一个未知数,然后根据x、y为正整数展开讨论,即可求解.14、4【解题分析】试题分析:因为△DEF是由△ABC通过平移得到,所以BE=CF,又因为BF=14,EC=1.所以BE=CF=.考点:图形平移的性质.15、-1【解题分析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【题目详解】解:去分母得:4x-x+3=-m,
由分式方程有增根,得到x-3=0,即x=3,
把x=3代入整式方程得:m=-1,
故答案为:-1.【题目点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16、【解题分析】
根据y轴上点的横坐标为0列式计算,即可求出m的值,再求出解即可.【题目详解】解:∵点P(m-1,2m+1)在y轴上,
∴m-1=0,
解得m=1,
∴2m+1=2×1+1=3,
∴点P的坐标为(0,3).
故答案为(0,3).【题目点拨】本题考查了点的坐标,解决问题的关键是利用了y轴上的点的坐标特征.三、解下列各题(本大题共8小题,共72分)17、(1)商场计划购进A种设备30套,B种设备40套;(2)购买方案有三种,分别是购买A种设备18套,购买B种设备52套;或购买A种设备19套,购买B种设备51套;或购买A种设备20套,购买B种设备50套.【解题分析】
(1)设商场计划购进A种设备x套,B种设备y套,根据两种多媒体教学设备若干套,共需124万元,全部销售后可获毛利润36万元,列出方程组即可解答(2)设商场购进A种设备a套,则B种设备(70-a)套,根据减少A种设备的购进数量,增加B种设备的购进数量.若用于购进这两种多媒体教学设备的总资金不超过120万元,且全部销售后可获毛利润不少于33.6万元.列出不等式即可解答【题目详解】解:(1)设商场计划购进A种设备x套,B种设备y套,由题意得
解得:
答:商场计划购进A种设备30套,B种设备40套;(2)设商场购进A种设备a套,则B种设备(70-a)套,解得:;答:有三种购买方案,分别是购买A种设备18套,购买B种设备52套;或购买A种设备19套,购买B种设备51套;或购买A种设备20套,购买B种设备50套.【题目点拨】此题考查二元一次方程组的应用和一元一次不等式组的应用,解题关键在于列出方程18、AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.【解题分析】
根据同位角相等,两直线平行得到AC∥BD,根据垂直及等量代换得到∠EAB=∠FBG,根据同位角相等,两直线平行证明结论.【题目详解】因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).故答案为:AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.【题目点拨】此题考查平行线的判定,解题关键在于利用垂直的定义求得∠EAB=∠FBG19、见解析【解题分析】
由垂直定义可得∠B=∠E=90°,根据等式的性质可得BC=EF,然后可利用SAS判定△ABC≌△DEF.【题目详解】∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°,
∵BF=CE,
∴BF+FC=EC+FC,
即BC=EF,
在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【题目点拨】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20、(1)见解析;(2)49°.【解题分析】
(1)首先作FG∥AB,根据直线AB∥CD,可得EF∥CD,据此推得∠ABF+∠CDF=∠BFD即可,再根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CDF=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED;(2)连接BD,先求出∠MBD+∠NDB的度数,再求出∠PBM+∠PDN的度数,再利用三角形内角和定理即可解决;(3)连接BD,先求出∠MBD+∠NDB的度数,再求出∠PBM+∠PDN的度数,再利用三角形内角和定理即可解决.【题目详解】(1)如图1,作FG∥AB,
∵直线AB∥CD,
∴FG∥CD,
∴∠ABF=∠BFG,∠CDF=∠GFD,
∴∠ABF+∠CDF=∠BFG+∠GFD=∠BFD,
即∠ABF+∠CDF=∠BFD,∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE)∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)
∠BED=∠ABE+∠CDE,
∴∠BFD=∠BED.(2)连接BD,
∵∠BMN=133°,∠MND=145°,
∴∠MBD+∠NDB=360°-(133°+145°)=82°,
∵BP、DP分别平分∠ABM、∠NDC,
∴∠PBM=∠ABM,∠PDN=∠CDN,
∴∠PBM+∠PDN=(180°-82°)=49°,
∴∠BPD=180°-(∠MBD+∠NDB)-(∠PBM+∠PDN)=49°.
故答案为49°.【题目点拨】本题考查了平行线的性质,角平分线的性质,三角形、四边形内角和定理,解题的关键是这些知识的灵活应用,学会添加辅助线,把问题转化为三角形或四边形.21、(1)见解析;(2)见解析;(3)OP;(4)PH<OP<OC,垂线段最短.【解题分析】
(1)(2)根据要求画垂线即可;(3)根据点到直线的距离的定义解答;(4)根据连接直线外一点与直线上各点的线段中,垂线段最短,可得PH<OP,OP<OC,问题得解.【题目详解】解:(1)如图所示,PH即为所求;(2)如图所示,CP即为所求;(3)点O到直线PC的距离是线段OP的长度,故答案为:OP;(4)∵连接直线外一点与直线上各点的线段中,垂线段最短,∴PH<OP,OP<OC,∴PH<OP<OC.理由是:垂线段最短,故答案为:PH<OP<OC,垂线段最短.【题目点拨】本题考查了垂线段最短:连接直线外一点与直线上各点的线段中,垂线段最短.也考查了基本作图.22、(1)S△AOB=;(2)C(0,);(3)直线AB与x轴交点为(,0);【解题分析】
(1)过A作AE⊥x轴于E,过B作BF⊥x轴于F,S△AOB=S梯形AEFB-S△AOE-S△FOB=--=;(2)S△AOB=S△AOC+S△COB,则有=OB×3+,即可求OC;(3)设直线AB的解析式y=kx+b,将A(3,1),B(-2,3)代入,即可得y=-x+;【题目详解】解:(1)过A作AE⊥x轴于E,过B作BF⊥x轴于F,,∵A(3,1),B(-2,3),∴AE=1,BF=OE=3,FO=2,∴EF=5,∴S△AOB=S梯形AEFB-S△AOE-S△FOB=--=;(2)∵S△AOB=S△AOC+S△COB,∴=OB×3+,∴OC=,∴C(0,);(3)设直线AB的解析式y=kx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游乐设施施工材料性能与应用考核试卷
- 组织领导力与决策过程优化考核试卷
- 互联网平台人工智能技术应用考核试卷
- 2025标准合同签订流程范本
- 2025商品房买卖合同纠纷与特征范本
- 2025年标准个人门面出租合同模板
- 第03讲 平方差与完全平方公式(原卷板)
- 二零二五违纪学生协议合同书范例
- 洗碗工的劳动合同书范例二零二五年
- 二零二五年薪制劳动合同范文
- 老年患者围手术期多模式镇痛低阿片方案中国专家共识(2021全文版)
- 2024年基金应知应会考试试题
- 2024-2025学年高二上学期期中家长会-家校同频共话成长 课件
- 混合痔的中医护理方案
- 托幼机构卫生评价报告
- 国开(内蒙古)2024年《经济学与生活》形考1-3答案
- 新疆维吾尔自治区2025届高考压轴卷生物试卷含解析
- DL∕T 592-2010 火力发电厂锅炉给水泵的检测与控制技术条件
- 2024届浙江省杭州市英特外国语学校八年级英语第二学期期末复习检测试题含答案
- 意识与计算的理论模型
- 工程伦理案例与分析
评论
0/150
提交评论