




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市南岗区哈尔滨三中2024届数学高二下期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图:在直棱柱中,,,分别是A1B1,BC,CC1的中点,则直线PQ与AM所成的角是()A. B. C. D.2.已知等比数列的前项和为,则的极大值为()A.2 B.3 C. D.3.若,则的展开式中常数项为A.8 B.16 C.24 D.604.给定下列两种说法:①已知,命题“若,则”的否命题是“若,则”,②“,使”的否定是“,使”,则()A.①正确②错误 B.①错误②正确 C.①和②都错误 D.①和②都正确5.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有()A.240 B.480 C.720 D.9606.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有()A. B. C. D.7.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件为“三个人去的景点各不相同”,事件为“甲独自去一个景点,乙、丙去剩下的景点”,则等于()A. B. C. D.8.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-49.若等差数列的前项和满足,,则()A. B.0 C.1 D.310.已知函数fx在R上可导,且fx=A.-2 B.2 C.4 D.-411.对两个变量x,y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…(xn,yn),则下列说法中不正确的是A.由样本数据得到的回归方程必过样本点的中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.12.已知的分布列为:设则的值为()A. B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,已知到直线:,的距离为2,则实数的值为__________.14.定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为a,b和1b,1a,则称这两个不等式为相连不等式.如果不等式x2-43x15.抛物线上的点到其焦点的距离为______.16.已知双曲线的离心率为,一条渐近线为,抛物线的焦点为F,点P为直线与抛物线异于原点的交点,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)学校某社团参加某项比赛,需用木料制作如图所示框架,框架下部是边长分别为的矩形,上部是一个半圆,要求框架围成总面积为.(1)试写出用料(即周长)关于宽的函数解析式,并求出的取值范围;(2)求用料(即周长)的最小值,并求出相应的的值.18.(12分)某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.(1)若4发子弹全打光,求他击中目标次数的数学期望;(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.19.(12分)在平面直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的单位长度,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线交于A,B两点,若点P坐标为(3,),求的值.20.(12分)某小区所有263户家庭人口数分组表示如下:家庭人口数12345678910家庭数20294850463619843(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);(2)写出他们家庭人口数的中位数(直接给出结果即可);(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)21.(12分)已知集合P=,函数的定义域为Q.(Ⅰ)若PQ,求实数的范围;(Ⅱ)若方程在内有解,求实数的范围.22.(10分)已知.(1)若,求函数的单调递增区间;(2)若,且函数在区间上单调递减,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【题目详解】以点A为坐标原点,建立如图所示的空间直角坐标系,设,则,据此可得:,,故,即直线PQ与AM所成的角是.本题选择D选项.【题目点拨】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.2、C【解题分析】由题意得,,,,则,解得,则,,令,解得,当时,为增函数;,为减函数;,为增函数,所以函数的极大值为,故选C.点睛:此题主要考查了等比数列前项和、函数极值的求解等有关方面的知识,及幂运算等运算能力,属于中档题型,也是常考考点.在首先根据等比数列前项和公式求出参数的值,再利用导数方法,求出函数的极值点,通过判断极值点两侧的单调性求出极大值点,从而求出函数的极大值.3、C【解题分析】因为所以的通项公式为令,即∴二项式展开式中常数项是,故选C.4、D【解题分析】
根据否命题和命题的否定形式,即可判定①②真假.【题目详解】①中,同时否定原命题的条件和结论,所得命题就是它的否命题,故①正确;②中,特称命题的否定是全称命题,所以②正确,综上知,①和②都正确.故选:D【题目点拨】本题考查四种命题的形式以及命题的否定,注意命题否定量词之间的转换,属于基础题.5、B【解题分析】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有2×4+4×3=6、D【解题分析】分析:先排乙,再排甲,最后排剩余三人.详解:先排乙,有种,再排甲,有种,最后排剩余三人,有种因此共有,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.7、C【解题分析】
这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【题目详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有种;另外,三个人去不同景点对应的基本事件有种,所以,故选C.【题目点拨】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.8、D【解题分析】
根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【题目详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【题目点拨】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。9、B【解题分析】根据等差数列的性质仍成等差数列,则,则,,选B.10、A【解题分析】
求导后代入x=1可得关于f'1【题目详解】由fx=令x=1,则f'1本题正确选项:A【题目点拨】本题考查导数值的求解,关键是能够根据导数运算法则得到导函数的解析式,属于基础题.11、C【解题分析】由样本数据得到的回归方程必过样本中心,正确;残差平方和越小的模型,拟合的效果越好,正确用相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好,不正确,线性相关系数|r|越大,两个变量的线性相关性越强,故正确。故选:C.12、A【解题分析】
求出η的期望,然后利用,求解即可.【题目详解】由题意可知E(η)=﹣101.∵,所以=E(1η﹣2)=1E(η)﹣21.故选A.【题目点拨】本题考查数学期望的运算性质,也可根据两个变量之间的关系写出ξ的分布列,再由ξ分布列求出期望.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】分析:可化为,利用点到直线:,的距离为2,求出m的值.详解:可化为,点到直线:,的距离为2,,又,.故答案为:1.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.14、5【解题分析】试题分析:设x2-43x⋅cos2θ+2<0的解集为(a,b),2考点:三个二次关系及三角函数化简点评:二次不等式的解的边界值等于与之对应的二次方程的根,本题由不等式的解转化为方程的根,进而利用根与系数的关系找到有关于θ的关系式15、5【解题分析】
先计算抛物线的准线,再计算点到准线的距离.【题目详解】抛物线,准线为:点到其焦点的距离为点到准线的距离为5故答案为5【题目点拨】本题考查了抛物线的性质,意在考查学生对于抛物线的理解.16、4【解题分析】
由双曲线的离心率求出渐近线的方程,然后求出直线与抛物线的交点的坐标,可得.【题目详解】双曲线中,,即,,不妨设方程为,由得或,即,抛物线中,∴.故答案为:4.【题目点拨】本题考查双曲线的几何性质,考查直线与抛物线相交问题,考查抛物线的焦半径公式.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2),此时【解题分析】
(1)根据面积可得到与的关系,写出周长即可(2)根据(1)写出的,利用均值不等式求解即可.【题目详解】(1),,,由得.(2),,当且仅当,即等号成立.【题目点拨】本题主要考查了实际问题中的函数关系,均值不等式,属于中档题.18、(1)(2)见解析【解题分析】分析:(1)他击中目标次数可能取的值为1,1,2,3,4,由题意,随机变量服从二项分布,即~,则可求4发子弹全打光,击中目标次数的数学期望;(2)由题意随机变量可能取的值是1,2,3,4,由此可求他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列详解:(1)他击中目标次数可能取的值为1,1,2,3,4由题意,随机变量服从二项分布,即~(若列出分布列表格计算期望,酌情给分)(2)由题意随机变量可能取的值是1,2,3,412341.91.191.1191.111点睛:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题.19、(1)(2)【解题分析】
(1)由极坐标与平面直角坐标之间的转化公式求得;(2)利用直线参数方程中的几何意义求解.【题目详解】解,(1)∵圆的极坐标方程为∴(*)又∵,∴代入(*)即得圆的直角坐标方程为(2)直线1的参数方程可化为代入圆c的直角坐标方程,得,∴∴【题目点拨】本题考查平面直角坐标系和极坐标的互化,以及直线的参数方程中的的几何意义,属于中档题.20、(1);(2);(3)平均数4.30人,方差【解题分析】
(1)根据方差的计算公式可得结果;(2)根据中位数的概念可得结果;(3)根据平均数与标准差的公式计算即可.【题目详解】解:(1)由方差的计算公式得:人口数方差为;(2)263户家庭,则中位数为第户家庭的人口数,,,所以中位数为4;(3)平均数:,标准差:【题目点拨】本题考查平均数,标准差,中位数的计算,是基础题.21、(1)(2)【解题分析】
(Ⅰ)由题得不等式在上有解,即有解,求出即得解.(Ⅱ)由题得在有解,即求的值域得解.【题目详解】(Ⅰ)P=,PQ,不等式在上有解,由得,而,(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF 2221-2025导热系数瞬态测定仪校准规范
- 湖北省武汉市新城区联盟2024-2025学年高三下学期四月模拟历史试题(含答案)
- 建设工程内部承包合同(知识研究版本)
- 江苏省无锡市江阴市澄东片重点名校2025届中考英语试题命题比赛模拟试卷(30)含答案
- 铁门关职业技术学院《项目前分析和项目分析》2023-2024学年第一学期期末试卷
- 重庆航天职业技术学院《音乐素养》2023-2024学年第二学期期末试卷
- 丽水职业技术学院《模型制作与工艺》2023-2024学年第二学期期末试卷
- 中国石油大学(华东)《装甲车辆工程专业导论》2023-2024学年第二学期期末试卷
- 山东省临沂市兰山区2024-2025学年高三3月调研考试物理试题含附加题含解析
- 惠州经济职业技术学院《生物伦理与安全》2023-2024学年第二学期期末试卷
- 食品工程原理实验教学大纲
- 5.Braden评估表及其评分指引
- SB/T 10104-2008糖果充气糖果
- 危险品运输车辆事故应急演练方案
- GA 499.1-2010气溶胶灭火系统第1部分:热气溶胶灭火装置
- 《西方哲学史》第二章-苏格拉底哲学和柏拉图哲学课件
- 水利基本建设财务管理讲义
- 会计学总论知识讲义课件
- 心包积液患者的护理查房ppt
- MSCCirc850船舶防火系统和设备保养检查指南
- 酒店改造工程施工组织方案
评论
0/150
提交评论