




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省示范名校数学高二第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知展开式的常数项为15,则()A. B.0 C.1 D.-12.已知函数()在上的最大值为3,则()A. B. C. D.3.用反证法证明“”时,应假设()A. B.C. D.4.已知,,,则下列结论正确的是()A. B. C. D.5.()A. B. C.2 D.16.已知,函数,若在上是单调减函数,则的取值范围是()A. B. C. D.7.函数的图象大致是A. B. C. D.8.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420 B.210 C.70 D.359.若函数无极值点,则()A. B. C. D.10.已知i是虚数单位,若z=1+i1-2i,则z的共轭复数A.-13-i B.-111.若函数在上是增函数,则的取值范围为()A. B. C. D.12.已知将函数的图象向左平移个单位长度后得到的图象,则在上的值域为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数据的方差为1,则数据的方差为____.14.若实数满足条件,则的最大值为_________.15.在棱长均为的正三棱柱中,________.16.复数(i是虚数单位)的虚部是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,设命题:实数满足,命题:实数满足.(1)若,为真命题,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(12分)选修4-4:坐标系与参数方程点是曲线:上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点逆时针旋转得到点,设点的轨迹为曲线.(1)求曲线,的极坐标方程;(2)射线,()与曲线,分别交于两点,设定点,求的面积.19.(12分)证明下列不等式:(1)用分析法证明:;(2)已知是正实数,且.求证:.20.(12分)已知函数.(1)若在处的切线过点,求的值;(2)若在上存在零点,求a的取值范围.21.(12分)在中,角,,的对边分别为,,,点在直线上.(1)求角的值;(2)若,求的面积.22.(10分)选修4-5:不等式选讲已知关于的不等式(Ⅰ)当a=8时,求不等式解集;(Ⅱ)若不等式有解,求a的范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先求出二项式展开式的通项公式,再令的幂指数等于0,求得的值,即可求得展开式中的常数项,再根据常数项为15,求得的值.【题目详解】解:二项式的展开式的通项公式为,令,求得,可得展开式中的常数项为,由此求得,故选:.【题目点拨】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.2、B【解题分析】
对函数进行求导,得,,令,,对进行分类讨论,求出每种情况下的最大值,根据已知条件可以求出的值.【题目详解】解:,,令,,①当时,,,,在上单调递增,,即(舍去),②当时,,,;时,,,故在上单调递增,在上单调递减,,即,令(),,在上单调递减,且,,故选B.【题目点拨】本题考查了已知函数在区间上的最大值求参数问题,求导、进行分类讨论函数的单调性是解题的关键.3、A【解题分析】
根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项.【题目详解】根据反证法的步骤,假设是对原命题的否定,P(x0)成立的否定是使得P(x0)不成立,即用反证法证明“∀x∈R,2x>0”,应假设为∃x0∈R,0故选:A.【题目点拨】本题考查反证法的概念,全称命题的否定,注意“改量词否结论”4、B【解题分析】
根据指数函数、对数函数的单调性分别求得的范围,利用临界值可比较出大小关系.【题目详解】;;且本题正确选项:【题目点拨】本题考查利用指数函数、对数函数的单调性比较大小的问题,关键是能够通过临界值来进行区分.5、A【解题分析】
根据定积分表示直线与曲线围成的图像面积,即可求出结果.【题目详解】因为定积分表示直线与曲线围成的图像面积,又表示圆的一半,其中;因此定积分表示圆的,其中,故.故选A【题目点拨】本题主要考查定积分的几何意义,熟记定积分几何意义即可,属于基础题型.6、C【解题分析】
根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【题目详解】因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值)..7、D【解题分析】
利用函数的奇偶性、特殊值判断函数图象形状与位置即可.【题目详解】函数y=是奇函数,所以选项A,B不正确;当x=10时,y=>0,图象的对应点在第一象限,D正确;C错误.故选D.【题目点拨】本题考查函数的图象的判断,一般利用函数的定义域、值域、奇偶性、单调性、对称性、特殊值等方法判断.8、A【解题分析】
将不同的染色方案分为:相同和不同两种情况,相加得到答案.【题目详解】按照的顺序:当相同时:染色方案为当不同时:染色方案为不同的染色方案为:种故答案为A【题目点拨】本题考查了加法原理和乘法原理,把染色方案分为相同和不同两种情况是解题的关键.9、A【解题分析】
先对函数求导,再利用导函数与极值的关系即得解.【题目详解】由题得,因为函数无极值点,所以,即.故选:A【题目点拨】本题主要考查利用导数研究函数的极值,意在考查学生对该知识的理解掌握水平和分析推理能力.10、C【解题分析】
通过分子分母乘以分母共轭复数即可化简,从而得到答案.【题目详解】根据题意z=1+i1+2i【题目点拨】本题主要考查复数的四则运算,共轭复数的概念,难度较小.11、D【解题分析】
在上为增函数,可以得到是为增函数,时是增函数,并且时,,利用关于的三个不等式求解出的取值范围.【题目详解】由题意,在上为增函数,则,解得,所以的取值范围为.故选:D【题目点拨】本题主要考查分段函数的单调性以及指数函数和一次函数的单调性,考查学生的理解分析能力,属于基础题.12、B【解题分析】解析:因,故,因,故,则,所以,应选答案B.二、填空题:本题共4小题,每小题5分,共20分。13、9【解题分析】
根据方差的线性变化公式计算:方差为,则的方差为.【题目详解】因为方差为,则的方差为,【题目点拨】本题考查方差的线性变化,难度较易.如果已知方差为,则的方差为,这可用于简便计算方差.14、1【解题分析】
作出平面区域,则表示过(0,1)和平面区域内一点的直线斜率.求解最大值即可.【题目详解】作出实数x,y满足条件的平面区域如图所示:由平面区域可知当直线过A点时,斜率最大.解方程组得A(1,2).∴z的最大值为=1.故答案为:1.【题目点拨】点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。注意解答本题时不要忽视斜率不存在的情形.15、【解题分析】
首先画出正三棱柱,求出边长和,最后求面积.【题目详解】因为是正三棱柱,并且棱长都为1,是腰长为,底边长为1的等腰三角形,所以底边的高,.故答案为【题目点拨】本题考查几何体中几何量的求法,意在考查空间想象能力,属于基础题型.16、-1【解题分析】
由题意,根据复数的运算,化简得,即可得到复数的虚部.【题目详解】由题意,复数,所以复数的虚部为.【题目点拨】本题主要考查了复数的四则运算及复数的分类,其中解答中熟记复数的四则运算,正确化简、运算复数,再利用复数的概念求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)若,分别求出成立的等价条件,利用为真命题,求出的取值范围;(2)利用是的充分不必要条件,即是的充分不必要条件,求实数的取值范围.【题目详解】由,得,(1)若,则:,若为真,则,同时为真,即,解得,∴实数的取值范围.(2)由,得,解得.即:.若是的充分不必要条件,即是的充分不必要条件,则必有,此时:,.则有,即,解得.【题目点拨】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将是的充分不必要条件,转化为是的充分不必要条件是解决本题的关键.18、(Ⅰ),;(Ⅱ).【解题分析】试题分析:(Ⅰ)由相关点法可求曲线的极坐标方程为.(Ⅱ)到射线的距离为,结合可求得试题解析:(Ⅰ)曲线的极坐标方程为.设,则,则有.所以,曲线的极坐标方程为.(Ⅱ)到射线的距离为,,则.19、(1)证明见解析;(2)证明见解析.【解题分析】分析:⑴两边同时平方即可证明不等式⑵构造同理得到其他形式,然后运用不等式证明详解:(1)证明:要证成立,只需证,即证,只需证,即证显然为真,故原式成立.(2)证明:∵,∴.点睛:本题主要考查的是不等式的证明,着重考查了基本不等式的变形与应用,考查了综合法和推理论证的能力,属于中档题。20、(1);(2).【解题分析】
(1)求出,然后求出和,然后表示出切线方程,把点代入方程即可取出(2)由得,然后求出,的值域即可.【题目详解】解:(1)∵.∴,又∵,∴在点处的切线方程为,即.由过点得:,.(2)由,得,令,.∴,令,解得,或.易知,,,,由在上存在零点,得的取值范围为.【题目点拨】若方程有根,则的范围即为函数的值域.21、(1);(2)【解题分析】
(1)代入点到直线的方程,根据正弦定理完成角化边,对比余弦定理求角;(2)将等式化简成“平方和为零”形式,计算出的值,利用面积公式计算的面积.【题目详解】解:(1)由题意得,由正弦定理,得,即,由余弦定理,得,结合,得.(2)由,得,从而得,所以的面积.【题目点拨】本题考查正、余弦定理的简单应用,难度较易.使用正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市轨道交通起重装卸机械操作工职业技能鉴定试卷
- 2025年国家安全生产监督管理总局公务员录用考试面试真题试卷(结构化小组)
- 2025年高压成套电器项目申请报告
- 2025年保育员(三级)考试试卷深度分析与备考指南
- 与离婚协议书补充协议
- 2025年PETS二级英语听力理解能力提升试卷(含2025年真题解析)
- 和珅的做人之道
- 2025年保育员实操技能试卷:幼儿教育心理辅导实践创新案例分析
- 2025年电子商务师(高级)职业技能鉴定试卷:热点问题解答与案例分析
- 2025年服装设计师(服装设计实践应用)考试试题
- 供应商黑名单管理制度
- 阴道松弛激光治疗
- 2025至2030年中国电商导购行业市场运营态势及投资前景趋势报告
- 河北省邢台市卓越联盟2024-2025学年高二下学期第三次考试(6月)语文试卷(图片版含解析)
- 2025年佛山市南海区民政局招聘残疾人专项工作人员题库带答案分析
- 公寓中介渠道管理制度
- PICC尖端心腔内心电图定位技术
- 2024东莞农商银行社会招聘笔试历年典型考题及考点剖析附带答案详解
- 肺性脑病的护理
- AI音乐概论知到智慧树期末考试答案题库2025年四川音乐学院
- 混凝土销售技能培训课件
评论
0/150
提交评论