2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题含解析_第1页
2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题含解析_第2页
2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题含解析_第3页
2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题含解析_第4页
2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省万宁市第三中学数学高二下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题①多面体的面数最少为4;②正多面体只有5种;③凸多面体是简单多面体;④一个几何体的表面,经过连续变形为球面的多面体就叫简单多面体.其中正确的个数为()A.1 B.2 C.3 D.42.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为()A. B. C. D.3.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.4.函数在上的极大值为()A. B.0 C. D.5.已知复数满足,则其共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是()A. B. C. D.7.的展开式中的系数是()A. B. C. D.8.已知函数,则y=f(x)的图象大致为()A. B.C. D.9.袋中装有6个红球和4个白球,不放回的依次摸出两球,在第一次摸到红球的条件下,第二次摸到红球的概率是A. B. C. D.10.已知,则下列结论正确的是A.是偶函数 B.是奇函数C.是奇函数 D.是偶函数11.某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B. C. D.12.复数z满足z⋅i=1+2i(iA.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有_______种不同的调度方法(填数字).14.已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.若P∪Q=Q,求实数a的取值范围__________.15.若平面的一个法向量为,直线的方向向量为,则与所成角的大小为__________.16.已知实数满足约束条件,且的最小值为,则常数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,极点为0,已知曲线与曲线交于不同的两点.求:(1)的值;(2)过点且与直线平行的直线的极坐标方程.18.(12分)对于定义域为的函数,如果存在区间,其中,同时满足:①在内是单调函数:②当定义域为时,的值域为,则称函数是区间上的“保值函数”,区间称为“保值函数”.(1)求证:函数不是定义域上的“保值函数”;(2)若函数()是区间上的“保值函数”,求的取值范围;(3)对(2)中函数,若不等式对恒成立,求实数的取值范围.19.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)设,若不等式对任意恒成立,求的取值范围.20.(12分)已知函数在处取得极值.确定a的值;若,讨论的单调性.21.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若,求直线的直角坐标方程.22.(10分)如图,已知在四棱锥中,为中点,平面平面,,,,.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据多面体的定义判断.【题目详解】正多面体只有正四、六、八、十二、二十,所以①②正确.表面经过连续变形为球面的多面体就叫简单多面体.棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.所以③④正确.故:①②③④都正确【题目点拨】根据多面体的定义判断.2、C【解题分析】每次所取的3个小球颜色各不相同的概率为:,∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.3、D【解题分析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程4、A【解题分析】

先算出,然后求出的单调性即可【题目详解】由可得当时,单调递增当时,单调递减所以函数在上的极大值为故选:A【题目点拨】本题考查的是利用导数求函数的极值,较简单.5、B【解题分析】分析:先求出z,然后根据共轭复数定义结合复数坐标写法即可.详解:由题可知:,所以所对应的坐标为(-1,1),故在第二象限,选B.点睛:考查复数的除法运算,复数的坐标表示,属于基础题.6、A【解题分析】

解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m.∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.7、D【解题分析】试题分析:的系数为.故选D.考点:二项式定理的应用.8、A【解题分析】

利用特殊值判断函数的图象即可.【题目详解】令,则,再取,则,显然,故排除选项B、C;再取时,,又当时,,故排除选项D.故选:A.【题目点拨】本题考查函数的图象的判断,特殊值法比利用函数的导函数判断单调性与极值方法简洁,属于基础题.9、D【解题分析】

通过条件概率相关公式即可计算得到答案.【题目详解】设“第一次摸到红球”为事件A,“第二次摸到红球”为事件B,而,,故,故选D.【题目点拨】本题主要考查条件概率的相关计算,难度不大.10、A【解题分析】因为,所以,又,故,即答案C,D都不正确;又因为,所以应选答案A.11、B【解题分析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积12、D【解题分析】

利用复数的四则运算法则,可求出z=1+2ii【题目详解】由题意,z=1+2ii=1+2【题目点拨】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先根据题意,选出满足题意的四辆车,确定对应的组合数,再根据题意进行排列,即可得出结果.【题目详解】从某车队调出4辆车,甲、乙两车必须参加,则有种选法;将选出的4辆车,按照“甲车要先于乙车开出”的要求进行排序,则有种排法;因此,满足题意的,调度方法有:种.故答案为:.【题目点拨】本题主要考查排列组合的应用,属于常考题型.14、【解题分析】

由题可知,,分和两种情况分类讨论,解不等式,求出实数的取值范围.【题目详解】P∪Q=Q,(1),即,解得(2),即,解得综上所述,实数的取值范围为.故答案为.【题目点拨】本题考查集合包含关系中的参数问题,解题时要注意分类讨论思想的合理运用,含参集合问题常采用数轴法,借助集合之间的包含关系得到参数的范围,一定要注意的情况.15、.【解题分析】

利用向量法求出直线与平面所成角的正弦值,即可得出直线与平面所成角的大小.【题目详解】设,,设直线与平面所成的角为,则,,.因此,直线与平面所成角的大小为,故答案为.【题目点拨】本题考查利用空间向量法求直线与平面所成的角,解题的关键就是利用空间向量进行转化,考查计算能力,属于中等题.16、-2.【解题分析】分析:画出可行域,将变形为,平移直线由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为列方程求解即可.详解:画出表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为可得,解得,故答案为.点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

试题分析:(1)把曲线C1和曲线C2的方程化为直角坐标方程,它们分别表示一个圆和一条直线.利用点到直线的距离公式求得圆心到直线的距离为d的值,再利用弦长公式求得弦长|AB|的值.

(2)用待定系数法求得直线l的方程,再根据极坐标方程与直角坐标方程的互化公式求得l的极坐标方程试题解析:(1)∵,∴,又∵,可得,∴,圆心(0,0)到直线的距离为∴.(2)∵曲线的斜率为1,∴过点且与曲线平行的直线的直角坐标方程为,∴直线的极坐标为,即.18、(1)证明见详解;(2)或;(3)【解题分析】

(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知,,转化为是方程的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题.【题目详解】(1)函数在时的值域为,不满足“保值函数”的定义,因此函数不是定义域上的“保值函数”.(2)因为函数在内是单调增函数,因此,,因此是方程的两个不相等的实根,等价于方程有两个不相等的实根.由解得或.(3),,即为对恒成立.令,易证在单调递增,同理在单调递减.因此,,.所以解得.又或,所以的取值范围是.【题目点拨】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.19、(1);(2).【解题分析】

(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;(2)设,即h(x)>0恒成立,对函数求导,分,,三种情况得到函数单调性,进而得到结果.【题目详解】(1)当时,,,切点为,,,曲线在点处的切线方程为,即.(2)设,,不等式对任意恒成立,即函数在上的最小值大于零.①当,即时,在上单调递减,的最小值为,由可得,,.②当,即时,在上单调递增,最小值为,由可得,即.③当,即时,可得最小值为,,,故.即,综上可得,的取值范围是.【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1)(2)在和内为减函数,在和内为增函数.【解题分析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.21、(1)(2)直线的直角坐标方程为或【解题分析】分析:(1)根据极坐标和直角坐标间的转化公式可得所求.(2)根据题意设出直线的参数方程,代入圆的方程后得到关于参数的二次方程,根据根与系数的关系和弦长公式可求得倾斜角的三角函数值,进而可得直线的直角坐标方程.详解:(1)由,可得,得,∴曲线的直角坐标方程为.(2)由题意设直线的参数方程为(为参数),将参数方程①代入圆的方程,得,∵直线与圆交于,两点,∴.设,两点对应的参数分别为,,则,∴,化简有,解得或,∴直线的直角坐标方程为或.点睛:利用直线参数方程中参数的几何意义解题时,要注意使用的前提条件,只有当参数的系数的平方和为1时,参数的绝对值才表示直线上的动点到定点的距离.同时解题时要注意根据系数关系的运用,合理运用整体代换可使得运算简单.22、(1)见解析;(2)【解题分析】

分析:(1)由勾股定理可得,可得平面,于是,由正三角形的性质可得,可得底面,从而可得结果;(2)以为,过作的垂线为建立坐标系,利用向量垂直数量积为零列方程组,求出平面的一个法向量与平面的一个法向量,利用空间向量夹角余弦公式可求出二面角的余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论