2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省海安市南莫中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一只袋内装有个白球,个黑球,所有的球除颜色外完全相同,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了个白球,则下列概率等于的是()A. B. C. D.2.()A.9 B.12 C.15 D.33.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.512 B.12 C.74.已知复数满足方程,复数的实部与虚部和为,则实数()A. B. C. D.5.在棱长为1的正方体中,分别是的中点.点在该正方体的表面上运动,则总能使与垂直的点所构成的轨迹的周长等于()A. B. C. D.6.已知是虚数单位,若复数满足,则的虚部为()A.-1 B. C.1 D.-37.已知命题椭圆上存在点到直线的距离为1,命题椭圆与双曲线有相同的焦点,则下列命题为真命题的是()A. B. C. D.8.设是偶函数的导函数,当时,,则不等式的解集为()A. B.C. D.9.函数的最小值为()A. B. C. D.10.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15∘,与灯塔S相距20nmile,随后货轮按北偏西30∘的方向航行30A.20(2+C.20(6+11.从5名男同学,3名女同学中任选4名参加体能测试,则选到的4名同学中既有男同学又有女同学的概率为()A. B. C. D.12.已知函数(为自然对数的底数),,若对于任意的,总存在,使得成立,则实数的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;③线性回归方程所在直线必过;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.其中错误的是________.14.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,,则椭圆的离心率为________15.已知命题:,为真命题,则实数的取值范围为__________.16.设随机变量ξ服从二项分布,则等于__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足.(Ⅰ)计算,,,并由此猜想通项公式;(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.18.(12分)2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:评价等级★★★★★★★★★★★★★★★分数0~2021〜4041〜6061~8081〜100人数5212675(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.(12分)在直角坐标系中,曲线(为参数,),曲线(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:,记曲线与的交点为.(Ⅰ)求点的直角坐标;(Ⅱ)当曲线与有且只有一个公共点时,与相较于两点,求的值.20.(12分)已知函数,.(1)当时,求在上的最大值和最小值:(2)若,恒成立,求a的取值范围.21.(12分)在平面直角坐标系中,圆C的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.求:(1)圆C的直角坐标方程;(2)圆C的极坐标方程.22.(10分)已知数列的前项的和,满足,且.(1)求数列的通项公式;(2)若数列满足:,求数列的前项的和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

当时,前2个拿出白球的取法有种,再任意拿出1个黑球即可,有种取法,在这3次拿球中可以认为按顺序排列,由此能求出结果.【题目详解】当时,即前2个拿出的是白球,第3个是黑球,前2个拿出白球,有种取法,再任意拿出1个黑球即可,有种取法,而在这3次拿球中可以认为按顺序排列,此排列顺序即可认为是依次拿出的球的顺序,即,.故选:D.【题目点拨】本题考查超几何分布概率模型,考查运算求解能力,属于基础题.2、A【解题分析】分析:直接利用排列组合的公式计算.详解:由题得.故答案为A.点睛:(1)本题主要考查排列组合的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)排列数公式:==(,∈,且).组合数公式:===(∈,,且)3、C【解题分析】试题分析:由题意可知,事件A与事件B是相互独立的,而事件A、B中至少有一件发生的事件包含AB、AB、AB,又P(A)=12,考点:相互独立事件概率的计算.4、D【解题分析】分析:由复数的运算,化简得到z,由实部与虚部的和为1,可求得的值.详解:因为所以因为复数的实部与虚部和为即所以所以选D点睛:本题考查了复数的基本运算和概念,考查了计算能力,是基础题.5、B【解题分析】分析:根据题意先画出图形,找出满足题意的点所构成的轨迹,然后再根据长度计算周长详解:如图:取的中点,的中点,连接,,,则平面设在平面中的射影为,过与平面平行的平面为能使与垂直的点所构成的轨迹为矩形,其周长与矩形的周长相等正方体的棱长为矩形的周长为故选点睛:本题主要考查了立体几何中的轨迹问题。考查了学生的分析解决问题的能力,解题的关键是运用线面垂直的性质来确定使与垂直的点所构成的轨迹,继而求出结果。6、D【解题分析】

利用复数代数形式的乘除运算可得z=1﹣3i,从而可得答案.【题目详解】,∴复数z的虚部是-3故选:D【题目点拨】本题考查复数代数形式的乘除运算,属于基础题.7、B【解题分析】对于命题p,椭圆x2+4y2=1与直线l平行的切线方程是:直线,而直线,与直线的距离,所以命题p为假命题,于是¬p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x2−16y2=144有相同的焦点(±5,0),故q为真命题,从而(¬p)∧q为真命题。p∧(¬q),(¬p)∧(¬q),p∧q为假命题,本题选择B选项.8、B【解题分析】

设,计算,变换得到,根据函数的单调性和奇偶性得到,解得答案.【题目详解】由题意,得,进而得到,令,则,,.由,得,即.当时,,在上是增函数.函数是偶函数,也是偶函数,且在上是减函数,,解得,又,即,.故选:.【题目点拨】本题考查了利用函数的奇偶性和单调性解不等式,构造函数,确定其单调性和奇偶性是解题的关键.9、A【解题分析】,如图所示可知,,因此最小值为2,故选C.点睛:解决本题的关键是根据零点分段去掉绝对值,将函数表达式写成分段函数的形式,并画出图像求出最小值.恒成立问题的解决方法(1)f(x)<m恒成立,须有[f(x)]max<m;(2)f(x)>m恒成立,须有[f(x)]min>m;(3)不等式的解集为R,即不等式恒成立;(4)不等式的解集为∅,即不等式无解.10、B【解题分析】由题意可知:SM=20,∠NMS=45°∴SM与正东方向的夹角为75°,MN与正东方向的夹角为60°,∴SNM=105°,∠MSN=30°∆MNS中利用正弦定理可得MNMN=∴货轮的速度v=故选B11、D【解题分析】

由题可知为古典概型,总的可能结果有种,满足条件的方案有三类:一是一男三女,一是两男两女,另一类是三男一女;每类中都用分步计数原理计算,再将三类组数相加,即可求得满足条件的结果,代入古典概型概率计算公式即可得到概率.【题目详解】根据题意,选4名同学总的可能结果有种.选到的4名同学中既有男同学又有女同学方案有三类:(1)一男三女,有种,(2)两男两女,有种.(3)三男一女,有种.共种结果.由古典概型概率计算公式,.故选D.【题目点拨】本题考查古典概型与排列组合的综合问题,利用排列组合的公式计算满足条件的种类是解决本题的关键.12、A【解题分析】,在区间上为增函数,在区间上为减函数.,,又,则函数在区间上的值域为.当时,函数在区间上的值域为.依题意有,则有,得.当时,函数在区间上的值域为,不符合题意.当时,函数在区间上的值域为.依题意有,则有,得.综合有实数的取值范围为.选A.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.二、填空题:本题共4小题,每小题5分,共20分。13、②④⑤【解题分析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时,则平均减少5个单位;曲线上的点与该点的坐标之间不一定具有相关关系;在一个列联表中,由计算得,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.14、【解题分析】

连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【题目详解】设,则,,由,得,,在△中,,又在中,,得故离心率【题目点拨】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.15、【解题分析】分析::,为真命题,则详解:已知命题:,为真命题,则实数的取值范围为.即答案为点睛:本题考查当特称命题为真时参数的取值范围,属基础题.16、【解题分析】

利用独立重复试验的概率计算出、、、,再将这些相加可得出.【题目详解】由于,所以,,,,,因此,,故答案为:.【题目点拨】本题考查二项分布独立重复试验的概率,解这类问题要注意将基本事件列举出来,关键在于灵活利用独立重复试验的概率公式进行计算,考查计算能力,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析.【解题分析】分析:(Ⅰ)计算出,由此猜想.(Ⅱ)利用数学归纳法证明猜想.详解:(Ⅰ),由此猜想;(Ⅱ)证明:当时,,结论成立;假设(,且),结论成立,即,当(,且)时,,即,所以,这就是说,当时,结论成立,根据(1)和(2)可知对任意正整数结论都成立,即.点睛:(1)本题主要考查不完全归纳法和数学归纳法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)数学归纳法证明的关键是证明当n=k+1时命题成立,这时要利用已知和假设.18、(1)(2)(i)(ii)【解题分析】

(1)从表格中找出评价为四星和五星的人数之和,再除以总数可得出所求频率;(2)(i)记事件恰有2名评价为五星1名评价为一星,然后利用独立重复试验的概率可求出事件的概率;(ii)由题意得出,然后利用二项分布的方差公式可得出的值。【题目详解】(1)由给出的数据可得,评价为四星的人数为6,评价为五星的人数是75,故评价在四星以上(包括四星)的人数为,故可估计观众对《流浪地球》的评价在四星以上(包括四星)的频率为0.81(或);(2)(i)记“恰有2名评价为五星1名评价为一星”为事件A,则;(ii)由题可知,故.【题目点拨】本题第(1)考查频率的计算,第(2)文考查独立重复试验的概率以及二项分布方差的计算,解题前要弄清事件的基本类型以及随机变量所服从的分布列类型,再利用相关公式求解,考查计算能力,属于中等题。19、(Ⅰ)(Ⅱ)1【解题分析】

试题分析:(1)将转化为普通方程,解方程组可得的坐标;(2)为圆,当有一个公共点时,可求得参数的值,联立的普通方程,利用根与系数的关系可得的值.解:(Ⅰ)由曲线可得普通方程.由曲线可得直角坐标方程:.由得,(Ⅱ)曲线(为参数,)消去参数可得普通方程:,圆的圆心半径为,曲线与有且只有一个公共点,,即,设联立得4x1x2﹣4(x1+x2)+4=2×(﹣1)2﹣4×(﹣1)﹣44=1..20、(1)最大值是,最小值为1.(2)【解题分析】

(1)记的导函数的导数为,分析可得,结合,可得在R上是增函数,再,可得在上是增函数,即得解;(2)分,,三种情况分析的单调性,继而分析的最小值,即得解.【题目详解】(1)为表述简单起见,记的导函数的导数为.当时,,则.,所以在R上是增函数.又,所以当时,,所以在上是增函数.故在上的最大值是,最小值为.(2),.①若,即时,,所以在R上是增函数.又,所以当时,,所以在上是增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论