山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题含解析_第1页
山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题含解析_第2页
山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题含解析_第3页
山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题含解析_第4页
山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市寿光市现代中学2024届数学高二第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,分别是,的中点,则四面体在平面上的正投影是A. B. C. D.2.方程表示双曲线的一个充分不必要条件是()A.-3<m<0 B.-3<m<2C.-3<m<4 D.-1<m<33.若,则()A. B. C.或 D.或4.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A.100 B.200 C.300 D.4005.函数在的图象大致为()A. B.C. D.6.已知为虚数单位,复数满足,在复平面内所对的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.用数学归纳法证明“…”时,由到时,不等试左边应添加的项是()A. B.C. D.8.已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的方程为()A. B. C. D.9.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.10.已知集合,,则为()A. B. C. D.11.已知随机变量X的分布列:02若,,则()A. B. C. D.12.若角的终边上有一点,则的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.人并排站成一行,其中甲、乙两人必须相邻,那么不同的排法有__________种.(用数学作答)14.函数的图像在处的切线方程为_______.15.执行如图所示的程序框图,则输出的的值为____________.16.已知向量,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某仪器配件质量采用值进行衡量,某研究所采用不同工艺,开发甲、乙两条生产线生产该配件,为调查两条生产线的生产质量,检验员每隔分别从两条生产线上随机抽取一个配件,测量并记录其值,下面是甲、乙两条生产线各抽取的30个配件值茎叶图.经计算得,,,,其中分别为甲,乙两生产线抽取的第个配件的值.(1)若规定的产品质量等级为合格,否则为不合格.已知产品不合格率需低于,生产线才能通过验收,利用样本估计总体,分析甲,乙两条生产线是否可以通过验收;(2)若规定时,配件质量等级为优等,否则为不优等,试完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“配件质量等级与生产线有关”?产品质量等级优等产品质量等级不优等合计甲生产线乙生产线合计附:0.100.050.010.0012.7063.8416.63510.82818.(12分)汽车尾气中含有一氧化碳,碳氢化合物等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了人,所得数据制成如下列联表:(1)若从这人中任选人,选到了解强制报废标准的人的概率为,问是否在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”?(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过年,可近似认为排放的尾气中浓度﹪与使用年限线性相关,确定与的回归方程,并预测该型号的汽车使用年排放尾气中的浓度是使用年的多少倍.附:,0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)选修4-5:不等式选讲设的最小值为.(1)求实数的值;(2)设,,,求证:.20.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由.21.(12分)已知,:,:.(I)若是的充分条件,求实数的取值范围;(Ⅱ)若,“或”为真命题,“且”为假命题,求实数的取值范围22.(10分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.2、A【解题分析】由题意知,,则C,D均不正确,而B为充要条件,不合题意,故选A.3、B【解题分析】

根据组合数的公式,列出方程,求出的值即可.【题目详解】∵,∴,或,解得(不合题意,舍去),或;∴的值是1.故选:B.【题目点拨】本题考查了组合数公式的应用问题,是基础题目.4、B【解题分析】

试题分析:设没有发芽的种子数为,则,,所以考点:二项分布【方法点睛】一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.5、C【解题分析】,为偶函数,则B、D错误;又当时,,当时,得,则则极值点,故选C.点睛:复杂函数的图象选择问题,首先利用对称性排除错误选项,如本题中得到为偶函数,排除B、D选项,在A、C选项中,由图可知,虽然两个图象在第一象限都是先增后减,但两个图象的极值点位置不同,则我们采取求导来判断极值点的位置,进一步找出正确图象.6、B【解题分析】

化简得到,得到答案.【题目详解】,故,故对应点在第二象限.故选:.【题目点拨】本题考查了复数的化简,对应象限,意在考查学生的计算能力.7、C【解题分析】

分别代入,两式作差可得左边应添加项。【题目详解】由n=k时,左边为,当n=k+1时,左边为所以增加项为两式作差得:,选C.【题目点拨】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.8、B【解题分析】

由已知方程即可得出双曲线的左顶点、一条渐近线方程与抛物线的焦点、准线的方程,再根据数量关系即可列出方程,解出即可.【题目详解】解:∵双曲线的左顶点(﹣a,0)与抛物线y2=2px(p>0)的焦点F(,0)的距离为1,∴a=1;又双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),∴渐近线的方程应是yx,而抛物线的准线方程为x,因此﹣1(﹣2),﹣2,联立得,解得a=2,b=1,p=1.故双曲线的标准方程为:.故选:B.【题目点拨】本题考查抛物线以及双曲线的简单性质的应用,熟练掌握圆锥曲线的图象与性质是解题的关键.9、D【解题分析】

求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【题目详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【题目点拨】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.10、A【解题分析】

利用集合的交集运算进行求解即可【题目详解】由题可知集合中,集合中求的是值域的取值范围,所以的取值范围为答案选A【题目点拨】求解集合基本运算时,需注意每个集合中求解的是x还是y,求的是定义域还是值域,是点集还是数集等11、B【解题分析】

由,可得,由随机变量分布列的期望、方差公式,联立即得解.【题目详解】由题意,且,又联立可得:故选:B【题目点拨】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.12、A【解题分析】

由题意利用任意角的三角函数的定义,求出的值.【题目详解】解:若角的终边上有一点,则

∴.

故选:A.【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、240【解题分析】分析:甲、乙两人必须相邻,利用捆绑法与其余的人全排即可.详解:甲乙相邻全排列种排法,利用捆绑法与其余的人全排有种排法,共有,故答案为.点睛:常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.14、【解题分析】

对函数求导,把分别代入原函数与导数中分别求出切点坐标与切线斜率,进而求得切线方程。【题目详解】,函数的图像在处的切线方程为,即.【题目点拨】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。15、1【解题分析】

列举出算法的每一步,于此可得出该算法输出的结果.【题目详解】成立,,,,;不成立,输出的值为,故答案为.【题目点拨】本题考查算法与程序框图,要求读懂程序框图,解题时一般是列举每次循环,并写出相应的结果,考查推理能力,属于基础题.16、2【解题分析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)甲生产线可以通过验收,乙生产线不能通过验收;(2)不能.【解题分析】

(1)甲生产线的不合格率为,小于,故甲生产线可以通过验收.乙生产线的不合格率约为,大于,故乙生产线不能通过验收;(2)根据提供的数据得到列联表;计算出,根据临界值表可得答案.【题目详解】(1)由参考数据得,故甲生产线抽取的30个配件中,不合格的有1个利用样本估计总体,甲生产线的不合格率估计为,小于由参考数据得,故乙生产线抽取的30个配件中,不合格的有2个利用样本估计总体,乙生产线的不合格率估计为,大于所以甲生产线可以通过验收,乙生产线不能通过验收.(2)由参考数据得,,;,.统计两条生产线检测的60个数据,得到列联表.产品质量等级优等产品质量等级不优等小计甲生产线28230乙生产线24630小计52860所以,不能在犯错概率不超过0.1的前提下认为配件质量等级与生产线有关.【题目点拨】本题考查了概率的计算和独立性检验,考查计算能力,属中档题.18、(1)可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2);预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【解题分析】

(1)根据题意计算,再利用,计算出,对照临界值得出结论;(2)由公式计算出,可得y关于t的回归方程,把t=12代入回归方程中,可预测该型号的汽车使用12年排放尾气中的浓度,即得。【题目详解】(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件,由已知得,解得,所以,,.假设:机动车强制报废标准是否了解与性别无关.由2×2列联表可知,的观测值,∴可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2)由折线图中所给数据计算,得,,故,,所以所求回归方程为.故预测该型号的汽车使用12年排放尾气中的浓度为,因为使用4年排放尾气中的浓度为,所以预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【题目点拨】本题考查列联表与独立性检验的应用,以及线性回归方程的求法,解题的关键是熟练掌握公式,考查学生基本的计算能力,属于中档题。19、(1);(2)见详解.【解题分析】

(1)将函数表示为分段函数,再求其最小值.(2)利用已知等式构造出可以利用均值不等式的形式.【题目详解】(1)当时,取得最小值,即.(2)证明:依题意,,则.所以,当且仅当,即,时,等号成立.所以.【题目点拨】本题考查求含绝对值函数的最值,由均值不等式求最值.含绝对值的函数或不等式问题,一般可以利用零点分类讨论法求解.已知或(是正常数,)的值,求另一个的最值,这是一种常见的题型,解题方法是把两式相乘展开再利用基本不等式求最值.20、(1);(2)见解析.【解题分析】分析:(1)由题意得,求解即可;(2)假设存在点满足条件,则,设,,,联立方程,从而可得,又由,得,从而求得答案.详解:(Ⅰ)由题意,设椭圆方程为,则有,解得,所以椭圆C的方程为.(Ⅱ)假设存在点满足条件,则.设,,,联立方程,得,,,由,得,即,综上所述,存在点,使直线AD与BD关于y轴对称.点睛:对题目涉及的变量巧妙的引进参数,利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得结果.21、(I)(Ⅱ)【解题分析】试题分析:(1),是的充分条件,是的子集,所以;(2)由题意可知一真一假,当时,,分别求出真假、假真时的取值范围,最后去并集就可以.试题解析:(1),∵是的充分条件,∴是的子集,,∴的取值范围是.(2)由题意可知一真一假,当时,,真假时,由;假真时,由或.所以实数的取值范围是.考点:含有逻辑联结词命题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论