广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题含解析_第1页
广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题含解析_第2页
广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题含解析_第3页
广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题含解析_第4页
广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市佛山三中2024届数学高二第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数为偶函数,则()A.-1 B.1 C.-1或1 D.02.已知各棱长均相等的正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角的大小分别为,则()A. B.C. D.前三个答案都不对3.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与的关系为()A.外离 B.相交 C.相切 D.内含4.已知定义在上的函数满足:函数的图象关于直线对称,且当成立(是函数的导函数),若,,,则的大小关系是()A. B. C. D.5.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率()A. B. C. D.6.已知点P在直径为2的球面上,过点P作球的两两相互垂直的三条弦PA,PB,PC,若,则的最大值为A. B.4 C. D.37.某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:每年体检每年未体检合计老年人7年轻人6合计50已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是()A. B. C. D.8.如果,则的解析式为()A. B.C. D.9.0πsinA.2 B.0 C.-2 D.110.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在中,若,,,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若、、两两互相垂直,,,,则四面体的外接球半径()A. B. C. D.12.如图,平面与平面所成的二面角是,是平面内的一条动直线,,则直线与所成角的正弦值的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).14.由0,1,2,…,9十个数字组成的无重复数字的三位数共______个15.在区间上随机地取一个实数,若实数满足的概率为,则_______.16.函数的零点个数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在区间上的最大值为3,最小值为-17,求的值18.(12分)在直角坐标系中,曲线:(,为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线:.(1)说明是哪一种曲线,并将的方程化为极坐标方程;(2)若直线的方程为,设与的交点为,,与的交点为,,若的面积为,求的值.19.(12分)已知函数当时,讨论的导函数在区间上零点的个数;当时,函数的图象恒在图象上方,求正整数的最大值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数);以直角坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若与交于点,求线段的长.21.(12分)设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.22.(10分)已知函数(且,e为自然对数的底数.)(1)当时,求函数在处的切线方程;(2)若函数只有一个零点,求a的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由f(x)为偶函数,得,化简成xlg(x2+1﹣m2x2)=0对恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【题目详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即;得对恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.【题目点拨】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.2、C【解题分析】

通过作出图形,分别找出正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角,通过计算余弦值比较大小即可知道角度大小关系.【题目详解】如图,正三棱锥,正四棱锥,正五棱锥,设各棱长都为2,在正三棱锥中,取AC中点D,连接PD,BD,可知即为侧面与底面所成角,可知,,由余弦定理得;同理,,于是,而由于为锐角,所以,故选C.【题目点拨】本题主要考查面面角的相关计算,意在考查学生的转化能力,空间想象能力,计算能力,难度中等.3、B【解题分析】

将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距,并将圆心距与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系.【题目详解】在曲线的极坐标方程两边同时乘以,得,化为普通方程得,即,则曲线是以点为圆心,以为半径的圆,同理可知,曲线的普通方程为,则曲线是以点为圆心,以为半径的圆,两圆圆心距为,,,,因此,曲线与相交,故选:B.【题目点拨】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.4、A【解题分析】

由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【题目详解】∵函数的图象关于直线对称,∴关于轴对称,∴函数为奇函数.因为,∴当时,,函数单调递减,当时,函数单调递减.,,,,故选A【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等5、C【解题分析】

记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【题目详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【题目点拨】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.6、A【解题分析】

由题意得出,设,,利用三角函数辅助角公式可得出的最大值.【题目详解】由于、、是直径为的球的三条两两相互垂直的弦,则,所以,设,,,其中为锐角且,所以,的最大值为,故选A.【题目点拨】本题考查多面体的外接球,考查棱长之和的最值,在直棱柱或直棱锥的外接球中,若其底面外接圆直径为,高为,其外接球的直径为,则,充分利用这个模型去解题,可简化计算,另外在求最值时,可以利用基本不等式、柯西不等式以及三角换元的思想来求解.7、D【解题分析】分析:先根据列联表列方程组,解得a,b,c,d,e,f,再判断真假.详解:因为,所以选D.点睛:本题考查列联表有关概念,考查基本求解能力.8、C【解题分析】

根据配凑法,即可求得的解析式,注意定义域的范围即可.【题目详解】因为,即令,则,即所以选C【题目点拨】本题考查了配凑法在求函数解析式中的应用,注意定义域的范围,属于基础题.9、A【解题分析】

根据的定积分的计算法则计算即可.【题目详解】0πsinxdx=(-cos故选:A.【题目点拨】本题考查了定积分的计算,关键是求出原函数,属于基础题.10、A【解题分析】

化简求得复数为,然后根据复数的几何意义,即可得到本题答案.【题目详解】因为,所以在复平面内对应的点为,位于第一象限.故选:A【题目点拨】本题主要考查复数的四则运算和复数的几何意义,属基础题.11、A【解题分析】

四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求.【题目详解】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,,,是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径.故选A.【题目点拨】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.12、B【解题分析】

假定ABCD和BCEF均为正方形,过D作,可证平面BCEF,进而可得直线BD与平面BCEF所成的角正弦值,即直线与所成角的正弦值的最小值,当直线与异面垂直时,所成角的正弦值最大.【题目详解】过D作,垂足为G,假定ABCD和BCEF均为正方形,且边长为1则平面CDG,故又,平面BCEF故直线BD在平面BCEF内的射影为BG,由已知可得,则以直线BD与平面BCEF所成的角正弦值,所以直线BD与平面BCEF内直线所成的角正弦值最小为,而直线与所成角最大为(异面垂直),即最大正弦值为1.故选:B【题目点拨】本题考查了立体几何中线面角,面面角找法,考查了转化思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、32【解题分析】分析:根据题意,按6个球取出的数目分6种情况讨论,分析求出每一种情况的取法数目,由加法原理计算可得答案.详解:由题意,一次可以取球的个数为1,2,3,4,5,6个,则若一次取完可由1个6组成,有1种;二次取完可由1与5,2与4,3与3组成共5种;三次取完由1,1,4或1,2,3或2,2,2组成共10种;四次取完有1,1,1,3或1,1,2,2组成共10种;五次取完,由1,1,1,1,2个组成共5种;六次取完由6个1组成共有1种,综上得,共有32种,故答案为32.点睛:此题主要考查数学中计数原理在实际问题中的应用,属于中档题型,也是常考考点.计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解计数问题最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.14、648【解题分析】

首先考虑百位不为,得到百位的情况数,再利用排列得到十位与个位的情况数,通过分步计数原理,得到答案.【题目详解】因为百位不能为,所以百位共有种情况,再在剩下的个数中,任选个安排在十位与个位,有种情况,根据分步计数原理可得,符合要求的三位数有个.故答案为:.【题目点拨】本题考查排列的应用,分步计数原理,属于简单题.15、2【解题分析】

画出数轴,利用满足的概率,可以求出的值即可.【题目详解】如图所示,区间的长度是6,在区间上随机地取一个数,若满足的概率为,则有,解得,故答案是:2.【题目点拨】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.16、2【解题分析】

根据图像与函数的单调性分析即可.【题目详解】的零点个数即的根的个数,即与的交点个数.又当时,,此时在上方.当时,,,此时在下方.又对求导有,对求导有,故随的增大必有,即的斜率大于的斜率.故在时,与还会有一个交点.分别作出图像可知有两个交点.故答案为:2【题目点拨】本题主要考查了数形结合求解函数零点个数的问题,需要根据题意分析函数斜率的变化规律与图像性质.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、k=﹣1,B=﹣17或k=1,B=3【解题分析】试题分析:由题设知k≠1且f'(x)=3kx(x-2),1<x<2时,x(x-2)<1;x<1或x>2时,x(x-2)>1;x=1和x=2时,f'(x)=1.由题设知-2≤x≤2,f(-2)=-21k+B,f(1)=B,f(2)=-4k+B.由此能够求出k、B的值试题解析:由题设知k≠1且f'(x)=3kx(x﹣2),1<x<2时,x(x﹣2)<1;x<1或x>2时,x(x﹣2)>1;x=1和x=2时,f'(x)=1.由题设知﹣2≤x≤2,f(﹣2)=﹣21k+B,f(1)=B,f(2)=﹣4k+B①k<1时,﹣2<x<1时,f'(x)<1;1<x<2时,f'(x)>1,∴f(x)在[﹣2,1)上递减,在(1,2)上递增,x=1为最小值点;∵f(﹣2)>f(2)∴f(x)的最大值是f(﹣2)即,解得k=-1,B=-17②k>1时,,解得k=1,B=3综上,k=﹣1,B=﹣17或k=1,B=3考点:利用导数求闭区间上函数的最值18、(1)是以为圆心,为半径的圆.的极坐标方程.(2)【解题分析】

(1)消去参数得到的普通方程.可得的轨迹.再将,带入的普通方程,得到的极坐标方程.(2)先得到的极坐标方程,再将,代入,解得,,利用三角形面积公式表示出的面积,进而求得a.【题目详解】(1)由已知得:平方相加消去参数得到=1,即,∴的普通方程:.∴是以为圆心,为半径的圆.再将,带入的普通方程,得到的极坐标方程.(2)的极坐标方程,将,代入,解得,,则的面积为,解得.【题目点拨】本题考查了直角坐标系下的参数方程、普通方程与极坐标方程的互化,考查了极坐标方程的应用,属于基础题.19、(1)当时,在存在唯一零点;当时,在没有零点(2)【解题分析】

(1)首先求,令,然后求,讨论当时,,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否存在零点;(2)由,参变分离求解出在上恒成立,转化为求函数的最小值,设,,利用导数判断函数的单调性,求得函数的最小值.【题目详解】解:(1).令,,则,①当时,当,,单调递减,又,所以对时,,此时在不存在零点.②当时,当,,单调递减.又因为,取,则,即.根据零点存在定理,此时在存在唯一零点.综上,当时,在存在唯一零点;当时,在没有零点.(2)由已知得在上恒成立.设,,则因为时,所以,设,,所以在上单调递增,又,,由零点存在定理,使得,即,,且当时,,,单调递减;当时,,,单调递增.所以,又在上单调递减,而,所以,因此,正整数的最大值为.【题目点拨】本题第一问考查了判断函数零点个数的问题,这类问题需判断函数的单调性,再结合函数零点存在性定理判断,已知函数是单调函数的前提下,需满足,才可以说明区间内存在唯一零点,但难点是有时候或不易求得,本题中,证明的过程中,用到了,以及只有时,才有,这种赋端点值是比较难的.20、(1),;(2)【解题分析】分析:(1)消去参数,即可得到曲线的普通方程;根据极坐标与直角坐标的互化公式,即可求解曲线的直角坐标方程;(2)由(1)得圆的圆心为,半径为,利用圆的弦长公式,即可求解.详解:(1),.(2)圆的圆心为,半径为,圆心到直线的距离为.所以.点睛:本题主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论