版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省安阳市林虑中学数学高二下期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数y=sin2x的图象可能是A. B.C. D.2.在同一直角坐标系中,曲线y=sin(x+πA.y=13C.y=3sin(2x+3.若函数在处取得极小值,则的最小值为()A.3 B.4 C.5 D.64.双曲线经过点,且离心率为3,则它的虚轴长是()A. B. C.2 D.45.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A. B.C. D.6.已知函数在处取得极值,则的图象在处的切线方程为()A. B. C. D.7.在方程(为参数)所表示的曲线上的点是()A.(2,7) B. C.(1,0) D.8.已知集合,若,则实数的值为()A.或 B.或 C.或 D.或或9.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”10.已知函数与的图像有三个不同的公共点,其中为自然对数的底数,则实数的取值范围为()A. B. C. D.11.下列各对函数中,图象完全相同的是()A.与 B.与C.与 D.与12.“b2=ac”是“a,b,c成等比数列”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,且满足,则__________.14.精准扶贫期间,5名扶贫干部被安排到三个贫困村进行扶贫工作,每个贫困村至少安排一人,则不同的分配方法共有____________种.15.设,是两条不同的直线,,是两个不同的平面,有下列五个命题:①若,与平面,都平行,则;②若,,,则;③若,,则;④若,,则;⑤若,,,则.其中所有真命题的序号是________.16.在的二项展开式中,若只有的系数最大,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求关于的不等式的解集;(2)若关于的不等式有解,求的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出的普通方程和的直角坐标方程:(Ⅱ)设点在上,点在上,求的最小值及此时的直角坐标.19.(12分)在二项式的展开式中,二项式系数之和为256,求展开式中所有有理项.20.(12分)已知过点的直线的参数方程是(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,试问是否存在实数,使得且?若存在,求出实数的值;若不存在,说明理由.21.(12分)某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验次;方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.(i)若与的期望相等.试求关于的函数解析式;(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.参考数据:22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线的普通方程及圆C的直角坐标方程;(2)设圆C与直线交于点,若点的坐标为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2、C【解题分析】
由x'=12x【题目详解】由伸缩变换得x=2x',y=13即y'=3sin(2x'+【题目点拨】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。3、B【解题分析】
先对函数求导,根据题意,得到,再用导数的方法研究函数单调性,进而可求出结果.【题目详解】因为,所以,又函数在处取得极小值,所以,所以,因此,由得;由得,所以函数在上单调递减,在上单调递增;所以;故选B【题目点拨】本题主要考查导数的应用,根据导数的方法研究函数的单调性,最值等,属于常考题型.4、A【解题分析】
根据双曲线经过的点和离心率,结合列方程组,解方程组求得的值,进而求得虚轴长.【题目详解】将点代入双曲线方程及离心率为得,解得,故虚轴长,故本小题选A.【题目点拨】本小题主要考查双曲线的离心率,考查双曲线的几何性质,考查方程的思想,属于基础题.解题过程中要注意:虚轴长是而不是.5、B【解题分析】
函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得,再将所得图像向左平移个单位,得,选B.6、A【解题分析】
利用列方程,求得的值,由此求得,进而求得的图象在处的切线方程.【题目详解】,函数在处取得极值,,解得,,于是,可得的图象在处的切线方程为,即.故选:A【题目点拨】本小题主要考查根据极值点求参数,考查利用导数求切线方程,属于基础题.7、D【解题分析】分析:化参数方程(为参数)为普通方程,将四个点代入验证即可.详解:方程(为参数)消去参数得到将四个点代入验证只有D满足方程.故选D.点睛:本题考查参数分析与普通方程的互化,属基础题8、D【解题分析】
就和分类讨论即可.【题目详解】因为当时,,满足;当时,,若,所以或.综上,的值为0或1或2.故选D.【题目点拨】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.9、A【解题分析】
根据题意知观测值,对照临界值得出结论.【题目详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【题目点拨】本题考查了独立性检验的应用问题,是基础题.10、B【解题分析】
将函数有三个公共点,转化为有三个解,再利用换元法设,整理为,画出函数图形得到答案.【题目详解】函数与的图像有三个不同的公共点即有三个解整理得:设,当单调递减,单调递增.如图所示:原式整理得到:图像有三个不同的公共点,即二次方程有两个解,一个小于0.一个在上或当时,当时,另一个零点在上,满足条件.故答案为B【题目点拨】本题考查了函数的零点问题,根据条件转化为方程的解,再利用换元法简化计算,本题综合性强,计算量大,意在考查学生的综合应用能力和计算能力.11、C【解题分析】
先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【题目详解】解:对于A、∵的定义域为,的定义域为.两个函数的对应法则不相同,∴不是同一个函数.对于B、∵的定义域,的定义域均为.∴两个函数不是同一个函数.对于C、∵的定义域为且,的定义域为且.对应法则相同,∴两个函数是同一个函数.对于D、的定义域是,的定义域是,定义域不相同,∴不是同一个函数.故选C.【题目点拨】本题考查两个函数解析式是否表示同一个函数,需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.12、B【解题分析】二、填空题:本题共4小题,每小题5分,共20分。13、-1【解题分析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.14、150【解题分析】
分两种情况讨论:一是三个贫困村安排的干部数分别为、、,二是三个贫困村安排的干部数分别为、、,利用排列组合思想分别求出这两种情况的分配方法数,加起来可得出结果.【题目详解】分两种情况讨论:一是三个贫困村安排的干部数分别为、、,分配方法种数为;二是三个贫困村安排的干部数分别为、、,分配方法种数为.综上所述,所有的分配方法种数为,故答案为.【题目点拨】本题考查排列组合综合问题,考查分配问题,这类问题一般是先分组再排序,由多种情况要利用分类讨论来处理,考查分类讨论数学思想,属于中等题.15、②⑤【解题分析】
根据相关定义、定理进行研究,也可借助长方体、正方体等进行验证【题目详解】①当时,与不一定平行,故①错误;③当垂直于与交线时,才垂直于,故③错误;④可能在上,故④错误;故②⑤正确【题目点拨】本题考查利用性质、定理判断直线与直线、直线与平面、平面与平面间的位置关系16、10【解题分析】
根据二项式系数的性质可直接得出答案.【题目详解】根据二项式系数的性质,由于只有第项的二项式系数最大,故答案为10.【题目点拨】本题主要考查了二项式系数的性质,解决二项式系数的最值问题常利用结论:二项展开式中中间项的二项式系数最大,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)将代入不等式,得到,再通过讨论的范围,即可求出结果;(2)先根据不等式有解,可得只需大于等于的最小值,进而可求出结果.【题目详解】(1)当时,不等式为,若,则,即,若,则,舍去,若,则,即,综上,不等式的解集为;(2)当且仅当时等号成立,题意等价于,,的取值范围为.【题目点拨】本题主要考查含绝对值不等式的解法,以及不等式成立的问题,根据含绝对值不等式的性质以及分类讨论的思想,即可求解,属于常考题型.18、(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ)最小值为,此时的直角坐标为.【解题分析】
(Ⅰ)曲线,利用消掉参数即可,曲线,利用化简即可。(Ⅱ)利用点到直线的距离公式,代入化简即可求出最小值。【题目详解】解:(I)的普通方程为,的直角坐标方程为.(II)由题意,可设点的直角坐标为.因为是直线,所以的最小值即为到的距离的最小值,,当且仅当()时,取得最小值,最小值为,此时的直角坐标为.【题目点拨】本题考查直角坐标方程与极坐标方程的互化,掌握互化公式是解本题的关键,属于基础题。19、答案见解析【解题分析】
由题意首先求得n的值,然后结合展开式的通项公式即可确定展开式中所有有理项.【题目详解】由题意可得:,解得:,则展开式的通项公式为:,由于且,故当时展开式为有理项,分别为:,,.【题目点拨】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.20、(1),;(2)或5【解题分析】试题分析:(1)消参可得的普通方程,两边乘,利用极坐标与直角坐标的互化公式可得其直角坐标方程;(2)由题中条件可判断过圆心,得与矛盾,得结论.(1)消由直线的普通方程为由曲线的直角坐标方程为(2),而圆的直径为4,故直线必过圆心,此时与矛盾实数不存在.21、(1)(2)(ⅰ)(ii)8【解题分析】
(1)对可能的情况分类:<1>前两次检验出一瓶含有细菌第三次也检验出一瓶含有细菌,<2>前三次都没有检验出来,最后就剩下两瓶含有细菌;(2)(i)根据,找到与的函数关系;(ii)根据得到关于的不等式式,构造函数解决问题.【题目详解】解:(1)记所求事件为,“第三次含有细菌且前2次中有一次含有细菌”为事件,“前三次均不含有细菌”为事件,则,且互斥,所以(2),的取值为,,所以,由得,所以;(ii),所以,所以,所以设,,当时,在上单调递增;当时,在上单调递减又,所以的最大值为8【题目点拨】本题考查离散型随机变量的均值以及随机事件的概率计算,难度较难.计算两个事件的和事件的概率,如果两个事件互斥,可将结果写成两个事件的概率之和;均值(或期望)的相关计算公式要熟记..22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 竹子主题课程设计模板
- 职业沟通-评价课程设计
- 《围术期的容量治疗》课件
- 瞬变电磁法课程设计
- 2024中级(四)汽车修理工理论学问试题
- 简单电路课程设计
- 网络流量监测课程设计
- 舞蹈早上好课程设计
- 互联网服务行业营业员工作总结
- 同心树共筑和谐初一班主任第一学期工作总结
- 提升极端天气背景下的城市政府韧性治理能力
- 服务营销学教案
- 护理查房 小儿支气管肺炎
- 相关方安全管理培训
- 2023年中国雪茄烟行业现状深度研究与未来投资预测报告
- 皮带输送机巡检规程
- 辽宁省大连市沙河口区2022-2023学年七年级上学期期末语文试题(含答案)
- 心肺循环课件
- 东大光明清洁生产审核报告
- 生产计划排产表-自动排产
- 管理研究方法论for msci.students maxqda12入门指南
评论
0/150
提交评论