版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市徐汇区位育中学数学高二下期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种2.已知,函数,若在上是单调减函数,则的取值范围是()A. B. C. D.3.若复数满足,其中为虚数单位,则在复平面上复数对应的点的坐标为()A. B. C. D.4.如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为()A. B. C. D.5.定义在区间上的函数的图象如图所示,以为顶点的△ABC的面积记为函数,则函数的导函数的大致图象为()A. B. C. D.6.设,且,则的最小值为()A. B.9 C.10 D.07.由半椭圆与半椭圆合成的曲线称作“果圆”,如图所示,其中,.由右椭圆的焦点和左椭圆的焦点,确定叫做“果圆”的焦点三角形,若“果圆”的焦点为直角三角形.则右椭圆的离心率为()A. B. C. D.8.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有()人.(K2≥k1)1.1511.111k13.8416.635A.12 B.6 C.11 D.189.的展开式中含项的系数为()A.160 B.210 C.120 D.25210.已知,直线过点,则的最小值为()A.4 B.3 C.2 D.111.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有()种A.1190 B.420 C.560 D.336012.已知的分布列为:设则的值为()A. B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列是函数的两个极值点,则____14.已知复数z=1+mi(i是虚数单位,m∈R),且(3+i)为纯虚数(是的共轭复数)则=_____15.用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容器,若衔接部分忽略不计,则该容器的容积为________立方分米.16.已知函数.(1)解不等式;(2)若不等式的解集非空,求实数的取值范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的展开式中,奇数项的二项式系数之和为128,且前三项系数成等差数列.(1)求的值;(2)若,展开式有多少有理项?写出所有有理项.18.(12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:(1)前三局比赛甲队领先的概率;(2)设本场比赛的局数为,求的概率分布和数学期望.(用分数表示)19.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.20.(12分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.21.(12分)高二某班名同学期末考完试后,商量购买一些学习参考书准备在高三时使用,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪购买,掷出点数大于或等于的人去图书批发市场购买,掷出点数小于的人去网上购买,且参加者必须从图书批发市场和网上选择一家购买.(1)求这人中至多有人去图书批发市场购买的概率;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,求随机变量的分布列和数学期望.22.(10分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)全体站成一排,甲不站排头也不站排尾;(2)全体站成一排,女生必须站在一起;(3)全体站成一排,男生互不相邻.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【题目详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.2、C【解题分析】
根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【题目详解】因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值)..3、C【解题分析】
利用复数的运算法则、几何意义即可得出.【题目详解】z=,故选:C.【题目点拨】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4、B【解题分析】
根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.【题目详解】根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与围成,其面积为,则正方形OABC中任取一点P,点P取自阴影部分的概率为;故选:B.【题目点拨】本题考查定积分在求面积中的应用,几何概型求概率,属于综合题,难度不大,属于简单题.5、D【解题分析】
连结AB后,AB长为定值,由C点变化得到三角形面积函数的增减性,从而得到面积函数的导数的正负,则答案可求.【题目详解】解:如图,△ABC的底边AB长一定,在点C由A到B的过程中,△ABC的面积由小到大再减小,然后再增大再减小,对应的面积函数的导数先正后负再正到负.且由原图可知,当C位于AB连线和函数f(x)的图象交点附近时,三角形的面积减或增较慢,故选D.【题目点拨】本题主要考查函数的单调性与其导函数的正负之间的关系,属于基础题.6、B【解题分析】
利用柯西不等式得出最小值.【题目详解】(x2)(y2)≥(x)2=1.当且仅当xy即xy=时取等号.故选:B.【题目点拨】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.7、B【解题分析】
根据“果圆”关于轴对称,可得是以为底的等腰三角形,由是直角三角形,得出,.再建立关于,,之间的关系式,求出结果.【题目详解】解:连接,,根据“果圆”关于轴对称,可得是以为底的等腰三角形,是直角三角形,,.又和分别是椭圆和的半焦距,,即.,.即,.故选:B.【题目点拨】本题考查椭圆的标准方程与简单几何性质,属于中档题.8、A【解题分析】
由题,设男生人数x,然后列联表,求得观测值,可得x的范围,再利用人数比为整数,可得结果.【题目详解】设男生人数为,则女生人数为,则列联表如下:喜欢抖音不喜欢抖音总计男生女生总计若有95%的把握认为是否喜欢抖音和性别有关,则即解得又因为为整数,所以男生至少有12人故选A【题目点拨】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.9、D【解题分析】
先化简,再由二项式通项,可得项的系数.【题目详解】,,当时,.故选D.【题目点拨】本题考查二项式展开式中指定项的系数,解题关键是先化简再根据通项公式求系数.10、A【解题分析】
先得a+3b=1,再与相乘后,用基本不等式即可得出结果.【题目详解】依题意得,,所以,当且仅当时取等号;故选A【题目点拨】本题考查了基本不等式及其应用,熟记基本不等式即可,属于基础题.11、B【解题分析】
根据分类计数原理和组合的应用即可得解.【题目详解】要求参赛的3人中既有男生又有女生,分为两种情况:第一种情况:1名男生2名女生,有种选法;第二种情况:2名男生1名女生,有种选法,由分类计算原理可得.故选B.【题目点拨】本题考查分类计数原理和组合的应用,属于基础题.12、A【解题分析】
求出η的期望,然后利用,求解即可.【题目详解】由题意可知E(η)=﹣101.∵,所以=E(1η﹣2)=1E(η)﹣21.故选A.【题目点拨】本题考查数学期望的运算性质,也可根据两个变量之间的关系写出ξ的分布列,再由ξ分布列求出期望.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】
求导后根据是方程的两根,由韦达定理,列出两根的关系式,再利用等比数列的性质求.【题目详解】因为,又是函数f(x)的两个极值点,则是方程的根,所以,所以解得或.故答案为-2或2.【题目点拨】本题考查了利用导数研究函数的极值点的问题,考查了韦达定理和等比数列的性质的运用,属于基础题.14、【解题分析】
先求出的表达式,再由纯虚数的定义,可求出的值,进而可求出.【题目详解】由题意,,,则为纯虚数,故,解得.故,.【题目点拨】本题考查了复数代数形式的四则运算,考查了共轭复数、复数的模、纯虚数的定义,属于基础题.15、【解题分析】
先由题意得到半圆形的弧长为,设制作的圆锥形容器的底面半径为,求出底面半径与圆锥的高,从而可求出结果.【题目详解】半径为2分米的半圆形的弧长为,设制作的圆锥形容器的底面半径为,则,则;则圆锥形容器的高为,所以容器的容积为.故答案为:【题目点拨】本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于常考题型.16、(1);(2).【解题分析】
(1)讨论范围去掉绝对值符号,再解不等式.(2)将函数代入不等式化简,再利用绝对值三角不等式得到不等式右边的最小值,转化为存在问题求得答案.【题目详解】解:(1),∴或或,解得:或或无解,综上,不等式的解集是(,).(2)(当时等号成立),因为不等式解集非空,∴,∴,∴或,即或,∴实数的取值范围是.【题目点拨】本题考查了绝对值不等式的解法,绝对值三角不等式,存在问题,题型比较综合,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2或14;(2),,.【解题分析】
先由二项式系数的性质求,再根据二项式展开式的通项公式和等差中项公式求;(2)根据二项式展开式的通项公式,令的指数为整数次求解.【题目详解】因为奇数项的二项式系数之和为128,所以,解得,所以二项式为第一项:,系数为1,第二项:,系数为,第三项:,系数为,由前三项系数成等差数列得:,解得或.(2)若,由(1)得二项式为,通项为:,其中所以,令即,此时;令即,不符题意;令即,不符题意;令即,此时;令即,不符题意;令即,不符题意;令即,此时综上,有3项有理项,分别是:,,.【题目点拨】本题考查二项式定理的系数性质和展开式的通项公式,等差中项公式.注意是第项.18、(1);(2)详见解析.【解题分析】
(1)分为甲队胜三局和甲队胜二局两种情况,概率相加得到答案.(2)本场比赛的局数为有3,4,5三种情况,分别计算概率得到分布列,最后计算得到答案.【题目详解】解:(1)设“甲队胜三局”为事件,“甲队胜二局”为事件,则,,所以,前三局比赛甲队领先的概率为(2)甲队胜三局或乙胜三局,甲队或乙队前三局胜局,第局获胜甲队或乙队前四局胜局,第局获胜的分部列为:数学期望为【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和解决问题的能力.19、(1)0.55(2)【解题分析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.20、(1)(2)见解析,【解题分析】
设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,可得,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,利用互斥事件与相互独立事件的概率计算公式即可得出.(2)的可能取值为0,1,2,3,4,,,,,,,,,,,,,,,利用互斥事件与相互独立事件的概率计算公式即可得出概率、分布列及其数学期望.【题目详解】解:设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件A表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则.(2)的可能取值为0,1,2,3,4,,∴的分布列为:01234所以【题目点拨】本题考查了用频率估计概率、随机变量的数学期望、二项分布列的性质、互斥事件与相互独立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.21、(1);(2)分布列见解析,.【解题分析】
(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,然后利用互斥事件的概率加法公式和独立重复试验的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、,分别求出相应的概率,由此能求出随机变量的分布列和数学期望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吊车协议书参考
- 个人汽车买卖协议模板
- 阑尾切除术病因介绍
- 中考政治拓展提升篇知识梳理
- (2024)某镇解决污染水项目可行性研究报告(一)
- 重庆2020-2024年中考英语5年真题回-学生版-专题10 书面表达
- 典型设备管理举例- 隋向30课件讲解
- 云南省保山市智源初级中学2024-2025学年九年级上学期12月月考历史试卷-A4
- 山东省东营市广饶县乐安中学2024-2025学年八年级上学期12月月考化学试题-A4
- 2023年药品包装机械项目筹资方案
- U8二次开发参考手册审批流
- 奥鹏华中师范大学2020年3月课程考试初等数论考前练兵资料及答案
- HCPL-7840电流检测
- 欧洲门窗标准(中文版)用于窗户
- 合同终止协议书的范本
- 两只老鼠胆子大PPT课件
- 浅谈中美丧葬文化差异
- 赛诺——MBR膜产品的介绍
- 我国储烟害虫烟草甲的发生现状与治理对策
- 春节习俗介绍新年春节介绍
- 北师大版四年级上册数学第四单元复习课件
评论
0/150
提交评论