2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题含解析_第1页
2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题含解析_第2页
2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题含解析_第3页
2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题含解析_第4页
2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省仙游县郊尾中学数学高二下期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,AD为BC边上的高,O为AD的中点,若,则A.1 B. C. D.2.已知函数满足,若函数与的图像的交点为,,…,,且,则()A.1 B.2 C.3 D.43.若点在椭圆内,则被所平分的弦所在的直线方程是,通过类比的方法,可求得:被所平分的双曲线的弦所在的直线方程是()A. B.C. D.4.直线的一个方向向量是().A. B. C. D.5.设,则“”是“”的()A.充分不必要条件 B.必要条件C.充分条件 D.既不充分也不必要条件6.已知等差数列前9项的和为27,,则A.100 B.99 C.98 D.977.设双曲线C:的一个顶点坐标为(2,0),则双曲线C的方程是()A. B. C. D.8.已知随机变量,若,则,分别为()A.和 B.和 C.和 D.和9.已知为自然对数的底数,则函数的单调递增区间是()A. B. C. D.10.设,则A. B. C. D.11.若角是第四象限角,满足,则()A. B. C. D.12.已知,,,,且满足,,,对于,,,四个数的判断,给出下列四个命题:①至少有一个数大于1;②至多有一个数大于1;③至少有一个数小于0;④至多有一个数小于0.其中真命题的是()A.①③ B.②④ C.①④ D.②③二、填空题:本题共4小题,每小题5分,共20分。13.从总体中抽取一个样本是5,6,7,8,9,则总体方差的估计值是____________.14.已知函数f(x)=是R上的增函数,则实数k的取值范围是________.15.2014年11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有种(用排列组合表示).16.已知一组数据,,,,的方差为,则数据2,2,2,2,2的方差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,,,,为棱上一点(不包括端点),且满足.(1)求证:平面平面;(2)为的中点,求二面角的余弦值的大小.18.(12分)已知函数,.(1)当时,求的单调区间;(2)若有两个零点,求实数的取值范围.19.(12分)[选修4-5:不等式选讲]已知函数=|x-a|+(a≠0)(1)若不等式-≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围20.(12分)已知函数,且曲线在点处的切线与直线平行.(1)求函数的单调区间;(2)若关于的不等式恒成立,求实数的取值范围.21.(12分)已知,是正数,求证:.22.(10分)已知函数.(1)若,求的最小值,并指出此时的取值范围;(2)若,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

通过解直角三角形得到,利用向量的三角形法则及向量共线的充要条件表示出利用向量共线的充要条件表示出,根据平面向量就不定理求出,值.【题目详解】在中,又所以为AD的中点故选D.【题目点拨】本题考查解三角形、向量的三角形法则、向量共线的充要条件、平面向量的基本定理.2、D【解题分析】

求出f(x)的对称轴,y=|x2-ax-5|的图象的对称轴,根据两图象的对称关系,求和,解方程可得所求值.【题目详解】∵f(x)=f(a-x),∴f(x)的图象关于直线x=对称,又y=|x2-ax-5|的图象关于直线x=对称,当m为偶数时,两图象的交点两两关于直线x=对称,∴x1+x2+x3+…+xm=•a=2m,解得a=1.当m奇数时,两图象的交点有m-1个两两关于直线x=对称,另一个交点在对称轴x=上,∴x1+x2+x3+…+xm=a•+=2m.解得a=1.故选D.【题目点拨】本题考查了二次型函数图象的对称性的应用,考查转化思想以及计算能力.3、A【解题分析】

通过类比的方法得到直线方程是,代入数据得到答案.【题目详解】所平分的弦所在的直线方程是,通过类比的方法,可求得双曲线的所平分的弦所在的直线方程是代入数据,得到:故答案选A【题目点拨】本题考查了类比推理,意在考查学生的推理能力.4、D【解题分析】

先求得直线的斜率,由此求得直线的方向向量.【题目详解】直线的斜率为,故其方向向量为.故选:D【题目点拨】本小题主要考查直线的方向向量的求法,属于基础题.5、A【解题分析】

分析两个命题的真假即得,即命题和.【题目详解】为真,但时.所以命题为假.故应为充分不必要条件.故选:A.【题目点拨】本题考查充分必要条件判断,充分必要条件实质上是判断相应命题的真假:为真,则是的充分条件,是的必要条件.6、C【解题分析】试题分析:由已知,所以故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.7、D【解题分析】

利用双曲线的一个顶点坐标为,求得的值,即可求得双曲线的方程,得到答案.【题目详解】由题意,因为双曲线的一个顶点坐标为,所以,所以双曲线的标准方程为,故选D.【题目点拨】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了运算与求解能力,属于基础题.8、C【解题分析】

利用二项分布的数学期望和方差公式求出和,然后利用期望和方差的性质可求出和的值.【题目详解】,,.,,由期望和方差的性质可得,.故选:C.【题目点拨】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.9、A【解题分析】因,故当时,函数单调递增,应选答案A。10、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11、B【解题分析】

由题意利用任意角同角三角函数的基本关系,求得的值.【题目详解】解:∴角满足,平方可得1+sin2,∴sin2,故选B.【题目点拨】本题主要考查同角三角函数的基本关系,属于基础题.12、A【解题分析】

根据对,,,取特殊值,可得②,④不对,以及使用反证法,可得结果.【题目详解】当,时,满足条件,故②,④为假命题;假设,由,,得,则,由,所以矛盾,故①为真命题,同理③为真命题.故选:A【题目点拨】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先求出样本平均数,由此能求出样本方差,由此能求出总体方差的估计值.【题目详解】解:从总体中抽取一个样本是5,6,7,8,9,样本平均数为,样本方差为,总体方差的估计值是1.故答案为:1.【题目点拨】本题考查总体方差的估计值的求法,考查平均数、总体方差等基础知识,考查运算求解能力,属于基础题.14、【解题分析】由题意可知,故答案为.15、【解题分析】试题分析:先让中国领导人站在第一排正中间位置共一种站法,再让美俄两国领导人站在与中国领导人相邻的两侧共站法,最后,另外个领导人在前后共位置任意站,共有种站法,所以,根据分步计数乘法原理,不同的排法共有种,故答案为.考点:排列组合及分步计数乘法原理的应用.16、2【解题分析】

根据方差的性质运算即可.【题目详解】由题意知:本题正确结果:【题目点拨】本题考查方差的运算性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)根据传递性,由平面,得到平面平面(2)作于点,过点作,建立空间直角坐标系,求出各平面法向量后根据夹角公式求得二面角余弦值【题目详解】(1)证明:因为,,所以,又,,所以平面,又平面,所以平面平面.(2)如图,作于点,过点作,则,,两两垂直,故以为坐标原点,直线,,分别为轴、轴、轴建立如图所示空间直角坐标系.设,则,,,所以,又,所以,,,所以,,,,.因为为的中点,所以.,,令为平面的法向量,则有即不妨设,则.易知平面的一个法向量为,.因为二角为钝角,所以二面角的余弦值为.【题目点拨】本题考查面面垂直证明与二面角的求法,如何建立空间直角坐标系是解题关键18、(1)见解析;(2)【解题分析】

(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记t=lnx+x,通过讨论a的范围,结合函数的单调性以及函数的零点的个数判断a的范围即可.【题目详解】(1)定义域为:,当时,.∴在时为减函数;在时为增函数.(2)记,则在上单增,且.∴.∴在上有两个零点等价于在上有两个零点.①在时,在上单增,且,故无零点;②在时,在上单增,又,,故在上只有一个零点;③在时,由可知在时有唯一的一个极小值.若,,无零点;若,,只有一个零点;若时,,而,由于在时为减函数,可知:时,.从而,∴在和上各有一个零点.综上讨论可知:时有两个零点,即所求的取值范围是.【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.19、(1)1.(2)[-,0).【解题分析】分析:第一问首先根据题中所给的函数解析式,将相应的变量代入可得结果,之后应用绝对值不等式的性质得到其差值不超过,这就得到|m|≤1,解出范围从而求得其最大值,第二问解题的方向就是向最小值靠拢,应用最小值小于零,从而求得参数所满足的条件,求得结果.详解:(Ⅰ)∵f(x)=|x-a|+,∴f(x+m)=|x+m-a|+,∴f(x)-f(x+m)=|x-a|-|x+m-a|≤|m|,∴|m|≤1,∴-1≤m≤1,∴实数m的最大值为1;(Ⅱ)当a<时,g(x)=f(x)+|2x-1|=|x-a|+|2x-1|+=∴g(x)min=g()=-a+=≤0,∴或,∴-≤a≤0,∴实数a的取值范围是[-,0).点睛:该题考查的是有关不等式的综合题,在解题的过程中,需要明确绝对值不等式的性质,从而求得参数所满足的条件,从而求得结果,第二问就要抓住思考问题的方向,向最值靠拢,即可求得结果.20、(1)单调递减区间是,单调递增区间是;(2).【解题分析】

(1)根据切线的斜率可求出,得,求导后解不等式即可求出单调区间.(2)原不等式可化为恒成立,令,求导后可得函数的最小值,即可求解.【题目详解】(1)函数的定义域为,,又曲线在点处的切线与直线平行所以,即,由且,得,即的单调递减区间是由得,即的单调递增区间是.(2)由(1)知不等式恒成立可化为恒成立即恒成立令当时,,在上单调递减.当时,,在上单调递增.所以时,函数有最小值由恒成立得,即实数的取值范围是.【题目点拨】本题主要考查了导数的几何意义,利用导数求函数的单调区间,最值,恒成立问题,属于中档题.21、见证明【解题分析】

运用基本不等式即可证明【题目详解】证明:因为,是正数,所以.所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论