




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市荔湾、海珠部分学校数学高二第二学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是偶函数的导函数,当时,,则不等式的解集为()A. B.C. D.2.数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是A.220 B.440 C.255 D.5103.设随机变量X的分布列如下:则方差D(X)=().A. B. C. D.4.电脑芯片的生产工艺复杂,在某次生产试验中,得到组数据,,,,,.根据收集到的数据可知,由最小二乘法求得回归直线方程为,则()A. B. C. D.5.若角为三角形的一个内角,并且,则()A. B. C. D.6.函数的单调递减区间是()A. B.与C.与 D.7.在中,,,,点满足,则等于()A.10 B.9 C.8 D.78.已知集合则=()A. B. C. D.9.一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则()A. B. C. D.10.已知展开式中的常数项是4与10的等差中项,则a的值为()A. B.2 C. D.11.的展开式的中间项为()A.24 B.-8 C. D.12.已知,函数的零点分别为,函数的零点分别为,则的最小值为()A.1 B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.14.已知矩阵,,则矩阵________.15.抛物线上的点到其焦点的距离为______.16.由抛物线y=x2,直线x=1,x=3和x轴所围成的图形的面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆满足:过椭圆C的右焦点且经过短轴端点的直线的倾斜角为.(Ⅰ)求椭圆的方程;(Ⅱ)设为坐标原点,若点在直线上,点在椭圆C上,且,求线段长度的最小值.18.(12分)(文科学生做)已知数列满足.(1)求,,的值,猜想并证明的单调性;(2)请用反证法证明数列中任意三项都不能构成等差数列.19.(12分)已知函数.(1)求函数的极值;(2)设函数.若存在区间,使得函数在上的值域为,求实数的取值范围.20.(12分)如图,四棱锥中,为正三角形,为正方形,平面平面,、分别为、中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.21.(12分)在平面直角坐标系中,已知点,是椭圆:的左、右焦点,且,椭圆上任意一点到,的距离之和为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线交椭圆于,两点,椭圆上存在点使得四边形为平行四边形,求四边形的面积.22.(10分)某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1:(1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?(2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为与的回归方程,求出与的回归方程.(结果精确到)(参考数据:,,,.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
设,计算,变换得到,根据函数的单调性和奇偶性得到,解得答案.【题目详解】由题意,得,进而得到,令,则,,.由,得,即.当时,,在上是增函数.函数是偶函数,也是偶函数,且在上是减函数,,解得,又,即,.故选:.【题目点拨】本题考查了利用函数的奇偶性和单调性解不等式,构造函数,确定其单调性和奇偶性是解题的关键.2、D【解题分析】分析:根据题意,分析可得“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则先分另外三人的编号必须“都大于28”或“都小于8”这两种情况讨论选出其他三人的情况,再将选出2组进行全排列,最后由分步计数原理计算可得答案.详解:根据题意,要确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则分2种情况讨论选出的情况:①如果另外三人的编号都大于28,则需要在29—40的12人中,任取3人,有种情况;②如果另外三人的编号都小于8,则需要在1—7的7人中,任取3人,有种情况.即选出剩下3人有种情况,再将选出的2组进行全排列,有种情况,则编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是种.故选:D.点睛:本题考查排列组合的应用,解题的关键是分析如何确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,进而确定分步,分类讨论的依据.3、B【解题分析】分析:先求出的值,然后求出,利用公式求出详解:故选点睛:本题考查了随机变量的分布列的相关计算,解答本题的关键是熟练掌握随机变量的期望与方差的计算方法4、D【解题分析】分析:根据回归直线方程经过的性质,可代入求得,进而求出的值.详解:由,且可知所以所以选D点睛:本题考查了回归直线方程的基本性质和简单的计算,属于简单题.5、A【解题分析】分析:利用同角关系,由正切值得到正弦值与余弦值,进而利用二倍角余弦公式得到结果.详解:∵角为三角形的一个内角,且,∴∴故选:A点睛:本题考查了同角基本关系式,考查了二倍角余弦公式,考查了计算能力,属于基础题.6、D【解题分析】
求出函数的导函数【题目详解】∵,∴.由,解得,∴函数的单调递减区间是.故选D.【题目点拨】利用导数求函数f(x)的单调区间的一般步骤:①确定函数f(x)的定义域;②求导数;③在函数f(x)的定义域内解不等式和;④根据③的结果确定函数f(x)的单调区间.7、D【解题分析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【题目点拨】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.8、D【解题分析】因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10.即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.故选D.9、C【解题分析】
根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,由于回归直线过样本中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.10、C【解题分析】
利用二项式展开式的通项公式求出展开式中的常数项的值,由常数项是4与10的等差中项,求得的值【题目详解】由题意得,令,解得.又因为4与10的等差中项为7,所以,即,故选C.【题目点拨】本题主要考查二项式定理的应用,属于基础题.11、C【解题分析】
由二项式展开式通项公式,再由展开式的中间项为展开式的第3项,代入求解即可.【题目详解】解:的展开式的中间项为展开式的第3项,即,故选:C.【题目点拨】本题考查了二项式展开式的通项公式,重点考查了展开式的中间项,属基础题.12、B【解题分析】试题分析:由题知,,,,.,又故选B.考点:1、函数的零点;2、指数运算;3、函数的最值.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
由组合数的性质得出,先求出无任何限制条件下所确定的点的个数,然后考虑坐标中有两个相同的数的点的个数,将两数作差可得出结果.【题目详解】由组合数的性质得出,不考虑任何限制条件下不同点的个数为,由于,坐标中同时含和的点的个数为,综上所述:所求点的个数为,故答案为.【题目点拨】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题.14、【解题分析】
先求出,再与矩阵B相乘即可.【题目详解】由已知,,所以.故答案为:【题目点拨】本题考查矩阵的乘法运算,涉及到可逆矩阵的求法,考查学生的基本计算能力,是一道容易题.15、5【解题分析】
先计算抛物线的准线,再计算点到准线的距离.【题目详解】抛物线,准线为:点到其焦点的距离为点到准线的距离为5故答案为5【题目点拨】本题考查了抛物线的性质,意在考查学生对于抛物线的理解.16、【解题分析】
由题意,作出图形,确定定积分,即可求解所围成的图形的面积.【题目详解】解析:如图所示,S=x2dx=1=(33-13)=.【题目点拨】本题主要考查了定积分的应用,其中根据题设条件,作出图形,确定定积分求解是解答的关键,着重考查了推理与运算能力,以及数形结合思想的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(Ⅱ).【解题分析】
(Ⅰ)设出短轴端点的坐标,根据过右焦点与短轴端点的直线的倾斜角为,可以求出斜率,这样就可以求出,再根据右焦点,可求出,最后利用求出,最后写出椭圆标准方程;(Ⅱ)设点的坐标分别为,其中,由,可得出等式,求出线段长度的表达式,结合求出的等式和基本不等式,可以求出线段长度的最小值.【题目详解】(I)设椭圆的短轴端点为(若为上端点则倾斜角为钝角),则过右焦点与短轴端点的直线的斜率,(Ⅱ)设点的坐标分别为,其中,即就是,解得.又,且当时等号成立,所以长度的最小值为【题目点拨】本题考查了求椭圆的标准方程,考查了利用基本不等式求线段长最小值问题,考查了数学运算能力.18、(1),猜想该数列为单调递减数列,证明见解析.(2)见解析.【解题分析】分析:(1)由题可直接计算,,的值,根据数值的增减性可猜想单调性;(2)反证法证明,先假设结论的反面成立,然后根据假设结合题设找出矛盾即可得原命题正确.详解:(1)计算得,猜想该数列为单调递减数列.下面给出证明:,因为,故,所以恒成立,即数列为单调递减数列.(2)假设中存在三项成等差数列,不妨设为这三项,由(1)证得数列为单调递减数列,则,即,两边同时乘以,则等式可以化为,(※)因为,所以均为正整数,故与为偶数,而为奇数,因此等式(※)两边的奇偶性不同,故等式(※)不可能成立,所以假设不成立,故数列中任意三项都不能构成等差数列.点睛:考查反证法,对反证法的运用难点在于矛盾的得出,通常等式的矛盾一般根据奇数偶数,有理数无理数,整数小数等矛盾进行研究,属于常规题.19、(1)极小值为,没有极大值.(2)【解题分析】
(1)根据题意,先对函数进行求导,解出的根,讨论方程的解的左右两侧的符号,确定极值点,从而求解出结果。(2)根据题意,将其转化为在上至少有两个不同的正根,再利用导数求出的取值范围。【题目详解】解:(1)定义域为,,时,,时,,∴在上是减函数,在上是增函数,∴的极小值为,没有极大值.(2),则,令,则.当时,,(即)为增函数,又,所以在区间上递增.因为在上的值域是,所以,,,则在上至少有两个不同的正根.,令,求导得.令,则,所以在上递增,,,当时,,∴,当时,,∴,所以在上递减,在上递增,所以,所以.【题目点拨】本题主要考查利用导数求函数的极值以及利用导数解决与存在性相关的综合问题,在解决这类问题时,函数的单调性、极值是解题的基础,在得到单调性的基础上经过分析可使问题得到解决。20、(1)见解析;(2).【解题分析】分析:(1)要证线面平行,只需在面内找一线与已知线平行即可,连接,根据中位线即可得即可求证;(2)求线面角则可直接建立空间直角坐标系,写出线向量和面的法向量,然后根据向量夹角公式求解即可.详解:(1)连接,∵是正方形,是的中点,∴是的中点,∵是的中点,∴,∵平面,平面,∴平面.(2)建立如图所示空间直角坐标系,设,则,,,,,,,设平面的法向量,则,取得,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哈尔滨石油学院《混凝土结构设计原理(含荷载与可靠度)》2023-2024学年第二学期期末试卷
- 秦皇岛工业职业技术学院《音乐教学法一》2023-2024学年第二学期期末试卷
- 金融高质量发展与经济增长的互动效应
- 湖南信息学院《小学教学设计与评价》2023-2024学年第二学期期末试卷
- 科幻未来主义酒店行业跨境出海项目商业计划书
- 数字化管理工具的演变-洞察阐释
- 人工智能智能语音交互系统行业跨境出海项目商业计划书
- 代谢综合征早期预警系统创新创业项目商业计划书
- 雪橇犬拉力赛行业跨境出海项目商业计划书
- 休闲零食混合包创新创业项目商业计划书
- 安全生产管理的技术规范与操作要求试题及答案
- GB/T 34110-2025信息与文献文件(档案)管理核心概念与术语
- 年地理中考热点6银发经济课件
- 云南省昆明市盘龙区2023-2024学年四年级下学期语文期末质量检测卷(含答案)
- Unit 7 Outdoor fun 单元教案 2024-2025学年译林版(2024)七年级英语下册
- 2025年北京市各区高三语文一模试卷《红楼梦》试题汇集练附答案解析
- 《税收基础知识》课件
- 技术检测与认证产品检测与认证服务模式创新案
- DB31-T 1564-2025 企业实验室危险化学品安全管理规范
- 《电气化公路运输系统电力牵引供电技术标准》
- 课题开题报告:心理健康教育与中小学学科教学融合的研究
评论
0/150
提交评论