




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆维吾尔自治区阿克苏市数学高二下期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.2.设,向量,若,则等于()A. B. C.-4 D.43.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.4.命题“,使”的否定是()A.,使 B.,使C.,使 D.,使5.袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是()A.310B.35C.16.设x0是函数f(x)=lnx+x﹣4的零点,则x0所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.已知随机变量满足,则下列选项正确的是()A. B.C. D.8.设,且,若能被100整除,则等于()A.19 B.91 C.18 D.819.已知直线l过点P(1,0,-1),平行于向量,平面过直线l与点M(1,2,3),则平面的法向量不可能是()A.(1,-4,2) B. C. D.(0,-1,1)10.若,且,则()A. B. C. D.11.若复数满足,则复数的虚部为.A.-2 B.-1 C.1 D.2.12.“”是“方程的曲线是椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,准线为,过点的直线交拋物线于,两点,过点作准线的垂线,垂足为,当点坐标为时,为正三角形,则______.14.已知向量与的夹角为60°,||=2,||=1,则|+2|=______.15.已知正方体的棱长为2,是棱的中点,点在正方体内部或正方体的表面上,且平面,则动点的轨迹所形成的区域面积是______.16.样本中共有5个个体,其值分别为,0,1,2,1.则样本方差为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)当时,求的单调区间与极值;(Ⅱ)当时,若函数在上有唯一零点,求的值18.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.19.(12分)如图,在四棱锥中,底面是边长为2的菱形,平面,,为的中点.(1)证明:;(2)求二面角的余弦值.20.(12分)已知是函数()的一条对称轴,且的最小正周期为.(1)求值和的单调递增区间;(2)设角为的三个内角,对应边分别为,若,,求的取值范围.21.(12分)设命题函数的值域为;命题对一切实数恒成立,若命题“”为假命题,求实数的取值范围.22.(10分)如图,在四边形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)点在线段上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【题目点拨】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.2、D【解题分析】
直接利用向量垂直的充要条件列方程求解即可.【题目详解】因为,且,所以,化为,解得,故选D.【题目点拨】利用向量的位置关系求参数是命题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.3、D【解题分析】
取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【题目详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【题目点拨】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.4、A【解题分析】
根据含有一个量词的命题的否定,可直接得出结果.【题目详解】因为特称命题的否定为全称命题,所以命题“,使”的否定是“,使”.故选A【题目点拨】本题主要考查含有一个量词的命题的否定,只需改量词与结论即可,属于基础题型.5、C【解题分析】试题分析:因为第一次摸到红球的概率为35,则第一次摸出红球且第二次摸出红球的概率为35×考点:1、条件概率;2、独立事件.6、C【解题分析】
由函数的解析式可得,再根据函数的零点的判定定理,求得函数的零点所在的区间,得到答案.【题目详解】因为是函数的零点,由,所以函数的零点所在的区间为,故选C.【题目点拨】本题主要考查了函数的零点的判定定理的应用,其中解答中熟记零点的存在定理,以及对数的运算性质是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】
利用期望与方差性质求解即可.【题目详解】;.故,.故选.【题目点拨】考查期望与方差的性质,考查学生的计算能力.8、A【解题分析】
将化为,根据二巷展开式展开后再根据余数的情况进行分析后可得所求.【题目详解】由题意得,其中能被100整除,所以要使能被100整除,只需要能被100整除.结合题意可得,当时,能被100整除.故选A.【题目点拨】整除问题是二项式定理中的应用问题,解答整除问题时要关注展开式的最后几项,本题考查二项展开式的应用,属于中档题.9、D【解题分析】试题分析:由题意可知,所研究平面的法向量垂直于向量,和向量,而=(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)(1,-4,2)=0,(0,2,4)(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)(,-1,)=0,(0,2,4)(,-1,)=0满足垂直,故正确;选项C,(2,1,1)(-,1,−)=0,(0,2,4)(-,1,−)=0满足垂直,故正确;选项D,(2,1,1)(0,-1,1)=0,但(0,2,4)(0,-1,1)≠0,故错误.考点:平面的法向量10、D【解题分析】
先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【题目详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D【题目点拨】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.11、D【解题分析】
根据复数除法的运算法则去计算即可.【题目详解】因为,所以,虚部是,故选D.【题目点拨】本题考查复数的除法运算以及复数实部、虚部判断,难度较易.复数除法运算时,注意利用平方差公式的形式将分母实数化去计算12、B【解题分析】方程的曲线是椭圆,故应该满足条件:故”是“方程的曲线是椭圆”的必要不充分条件.故答案为:B.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
设点在第一象限,根据题意可得直线的倾斜角为,过点作轴,垂足为,由抛物线的定义可得,,通过解直角三角形可得答案.【题目详解】设点在第一象限,过点作轴,垂足为,由为正三角形,可得直线的倾斜角为.由抛物线的定义可得,又,所以在中有:.即,解得:.故答案为:2【题目点拨】本题考查抛物线中过焦点的弦的性质,属于难题.14、【解题分析】
∵平面向量与的夹角为,∴.∴故答案为.点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2)常用来求向量的模.15、【解题分析】
分别取的中点,并连同点顺次连接,六边形就是所求的动点的轨迹,求出面积即可.【题目详解】如下图所示:分别取的中点,并连同点顺次连接,因为是三角形的中位线,所以平面,平面,同理都平行平面,所以就是所求的动点的轨迹,该正六边形的边长为,所以正六边形的面积为:.故答案为【题目点拨】本题考查了直线与平面平行的判定定理的应用,考查了数学运算能力、空间想象能力.16、2【解题分析】
根据题中数据,求出平均值,再由方差计算公式,即可求出结果.【题目详解】因为,0,1,2,1这五个数的平均数为:,所以其方差为:.故答案为:.【题目点拨】本题主要考查计算几个数的方差,熟记公式即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)的单调递增区间是,单调递减区间是.极大值是,无极小值.(Ⅱ)1【解题分析】
(Ⅰ)把代入,令,求出极值点,再求出的单调区间,确定函数的极值;(Ⅱ)函数在上有唯一零点,等价于的极小值等于0,列出等式,可求得t.【题目详解】解:(Ⅰ)当时,,则,令,得,∴的单调递增区间是,单调递减区间是.∴的极大值是,无极小值.(Ⅱ)当时,,由,得,∴在上单调递减,在上单调递增,∴的极小值是,∴只要,即,令,则,∴在上单调递增.∵,∴的值是1.【题目点拨】本题主要考查利用导函数求增减区间和极值;以及根据函数零点的个数,确定参数的取值,数形结合方法的应用是解决本题的关键.18、(1);(2)见解析【解题分析】
(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【题目详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【题目点拨】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.19、(1)见解析;(2).【解题分析】
(1)证明,再证明平面,即可证明;(2)以为原点建立空间直角坐标系,再求平面以及平面的法向量,再求两个平面法向量夹角的余弦值,结合图像即可求得二面角的余弦值.【题目详解】(1)证明:连接,.因为四边形是菱形且,为的中点,所以.因为平面,所以,又,所以平面,则.因为,所以.(2)以为原点建立空间直角坐标系(其中为与的交点),如图所示,则,,,.设平面的法向量为,则,,即,令,得.设平面的法向量为,则,,即,令,得.所以,由图可知二面角为钝角,故二面角的余弦值为.【题目点拨】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.20、(1),(2)【解题分析】
(1)由三角函数的辅助角公式,得,求得,又由为对称轴,求得,进而得到则,得出函数的解析式,即可求解函数的单调递增区间;(2)由(1)和,求得,在利用正弦定理,化简得,利用角的范围,即可求解答案.【题目详解】(1),所以.因为为对称轴,所以,即,则,则,所以.令,所以的单调递增区间为.(2),所以,则,由正弦定理得,为外接圆半径,所以,∵,,.【题目点拨】本题主要考查了三角函数的综合应用,以及正弦定理的应用,其中解答中根据题设条件求解函数的解析式,熟记三角函数的恒等变换和三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.21、【解题分析】试题分析:分别求出命题,成立的等价条件,利用且为假.确定实数的取值范围.试题解析:真时,合题意.时,.时,为真命题.真时:令,故在恒成立时,为真命题.为真时,.为假命题时,.考点:复合命题的真假.22、(1)见解析;(2)【解题分析】
试题分析:(Ⅰ)在梯形中,设,题意求得,再由余弦定理求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 便宜门店转让合同范本
- 促销返利合同范本
- 个体医疗机构年度工作总结报告
- 个人工作自我鉴定简短
- 劳务公司派遣员工合同范本
- 单位对外投资合同范本
- 三八节教师演讲稿
- 工业锅炉司炉模考试题及答案
- 高压电工(运行)习题+参考答案
- 供货款合同范本
- 大学生安全知识班会
- 课件围术期下肢深静脉血栓的预防与护理
- 《电力变压器》课件
- 初级铁路线路工技能鉴定考试题库
- 2025年度建筑垃圾运输与再生资源回收一体化合同样本
- 2024新人教版英语七下单词默写表(开学版)
- (2025)辅警招聘公安基础知识必刷题库及参考答案
- 河南省信阳市固始县2023-2024学年四年级下学期期末数学试题
- 奥数知识点 间隔问题
- 简易旋转倒立摆及控制装置
- 深圳大学《数字信号处理》2009年期末考试试卷A卷
评论
0/150
提交评论