2024届广东省珠海市数学高二第二学期期末调研模拟试题含解析_第1页
2024届广东省珠海市数学高二第二学期期末调研模拟试题含解析_第2页
2024届广东省珠海市数学高二第二学期期末调研模拟试题含解析_第3页
2024届广东省珠海市数学高二第二学期期末调研模拟试题含解析_第4页
2024届广东省珠海市数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省珠海市数学高二第二学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式(ax-36)3(a>0)的展开式的第二项的系数为A.3B.73C.3或73D.32.已知是定义在上的奇函数,对任意,,都有,且对于任意的,都有恒成立,则实数的取值范围是()A. B. C. D.3.设,,i为虚数单位,则M与N的关系是().A. B. C. D.4.下列有关结论正确的个数为()①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件“4个人去的景点不相同”,事件“小赵独自去一个景点”,则;②设,则“”是“的充分不必要条件;③设随机变量服从正态分布,若,则与的值分别为.A.0 B.1 C.2 D.35.的展开式中,的系数为()A.-10 B.-5 C.5 D.06.一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率()A. B. C. D.7.正数a、b、c、d满足,,则()A. B.C. D.ad与bc的大小关系不定8.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,,则f(x)()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值9.复数为虚数单位)的虚部为()A. B. C. D.10.已知,,,则下列结论正确的是()A. B. C. D.11.已知,则为()A.2 B.3 C.4 D.512.命题“任意”为真命题的一个充分不必要条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,是单位向量.若,则向量,夹角的取值范围是_________.14.若的展开式中的系数是,则.15.已知双曲线和椭圆焦点相同,则该双曲线的方程为__________.16.已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在与时都取得极值.(1)求的值与函数的单调区间;(2)若对,不等式恒成立,求的取值范围.18.(12分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.19.(12分)已知函数.(1)求;(2)求函数的图像上的点P(1,1)处的切线方程.20.(12分)已知函数.(1)当时,讨论函数的单调性;(2)若不等式对于任意恒成立,求正实数的取值范围.21.(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式对任意的实数恒成立,求实数的取值范围.22.(10分)(学年安徽省六安市第一中学高三上学期第二次月考)已知函数f(x)=log4(1)求k的值;(2)若函数y=fx的图象与直线y=12x+a没有交点,(3)若函数hx=4fx+12x+m⋅2x-1,x∈0,log23

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:∵展开式的第二项的系数为-32,∴C31a2(-当a=1时,-2a考点:二项式定理、积分的运算.2、B【解题分析】

由可判断函数为减函数,将变形为,再将函数转化成恒成立问题即可【题目详解】,又是定义在上的奇函数,为R上减函数,故可变形为,即,根据函数在R上为减函数可得,整理后得,在为减函数,为增函数,所以在为增函数,为减函数在恒成立,即,当时,有最小值所以答案选B【题目点拨】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题3、D【解题分析】

先根据性质化简,再判断选项.【题目详解】,所以故选:D【题目点拨】本题考查性质,考查基本分析求解能力,属基础题.4、D【解题分析】对于①,,所以,故①正确;对于②,当,有,而由有,因为,所以是的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线对称,且所以,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.5、B【解题分析】

在的二项展开式的通项公式中,令x的幂指数分别等于2和1,求出r的值,得到含与的项,再与、与-1对应相乘即可求得展开式中x的系数.【题目详解】要求的系数,则的展开式中项与相乘,项与-1相乘,的展开式中项为,与相乘得到,的展开式中项为,与-1相乘得到,所以的系数为.故选B.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式及特定项的系数,属于基础题.6、C【解题分析】

第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率,计算得到答案.【题目详解】第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率故答案选C【题目点拨】本题考查了条件概率,将模型简化是解题的关键,也可以用条件概率公式计算.7、C【解题分析】因为a,b,c,d均为正数,又由a+d=b+c得a2+2ad+d2=b2+2bc+c2所以(a2+d2)﹣(b2+c2)=2bc﹣2ad.①又因为|a﹣d|<|b﹣c可得a2﹣2ad+d2<b2﹣2bc+c2,②将①代入②得2bc﹣2ad<﹣2bc+2ad,即4bc<4ad,所以ad>bc故选C.8、D【解题分析】因为xf′(x)-f(x)=xlnx,所以,所以,所以f(x)=xln2x+cx.因为f()=ln2+c×=,所以c=,所以f′(x)=ln2x+lnx+=(lnx+1)2≥0,所以f(x)在(0,+∞)上单调递增,所以f(x)在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如构造,构造,构造,构造等9、B【解题分析】

由虚数的定义求解.【题目详解】复数的虚部是-1.故选:B.【题目点拨】本题考查复数的概念,掌握复数的概念是解题基础.10、B【解题分析】

根据指数函数、对数函数的单调性分别求得的范围,利用临界值可比较出大小关系.【题目详解】;;且本题正确选项:【题目点拨】本题考查利用指数函数、对数函数的单调性比较大小的问题,关键是能够通过临界值来进行区分.11、A【解题分析】

根据自变量范围代入对应解析式,解得结果.【题目详解】故选:A【题目点拨】本题考查分段函数求值,考查基本分析求解能力,属基础题.12、C【解题分析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设向量、的夹角为,在不等式两边平方,利用数量积的运算律和定义求出的取值范围,于此可求出的取值范围.【题目详解】设向量、的夹角为,,两边平方得,、都是单位向量,则有,得,,,因此,向量、的夹角的取值范围是,故答案为.【题目点拨】本题考查平面数量积的运算,考查平面向量夹角的取值范围,在涉及平面向量模有关的计算时,常将等式或不等式进行平方,结合数量积的定义和运算律来进行计算,考查运算求解能力,属于中等题.14、1【解题分析】

先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中的项的系数,再根据的系数是列方程求解即可.【题目详解】展开式的的通项为,令,的展开式中的系数为,故答案为1.【题目点拨】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15、【解题分析】分析:根据题意,求出椭圆的焦点坐标,由双曲线的几何性质可得若双曲线和椭圆焦点相同,则有,解得m的值,将m的值代入双曲线的方程,即可得答案.详解:根据题意,椭圆的焦点在x轴上,且焦点坐标为,若双曲线和椭圆焦点相同,则有,解得,则双曲线的方程为.故答案为.点睛:本题考查双曲线的几何性质,关键是掌握双曲线的标准方程的形式.16、【解题分析】试题分析:椭圆的左焦点为,右焦点为,根据椭圆的定义,,∴,由三角形的性质,知,当是延长线与椭圆的交点时,等号成立,故所求最大值为.考点:椭圆的定义,三角形的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、解:(1),递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)【解题分析】

(1)求出f(x),由题意得f()=0且f(1)=0联立解得与b的值,然后把、b的值代入求得f(x)及f(x),讨论导函数的正负得到函数的增减区间;(1)根据(1)函数的单调性,由于x∈[﹣1,1]恒成立求出函数的最大值为f(1),代入求出最大值,然后令f(1)<c1列出不等式,求出c的范围即可.【题目详解】(1),f(x)=3x1+1ax+b由解得,f(x)=3x1﹣x﹣1=(3x+1)(x﹣1),函数f(x)的单调区间如下表:x(﹣∞,)(,1)1(1,+∞)f(x)+0﹣0+f(x)极大值极小值所以函数f(x)的递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)因为,根据(1)函数f(x)的单调性,得f(x)在(﹣1,)上递增,在(,1)上递减,在(1,1)上递增,所以当x时,f(x)为极大值,而f(1)=,所以f(1)=1+c为最大值.要使f(x)<对x∈[﹣1,1]恒成立,须且只需>f(1)=1+c.解得c<﹣1或c>1.【题目点拨】本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数恒成立问题,属于中档题.18、(1);(2);(3).【解题分析】分析:(1)由,即可求出p;(2)当时,,两边同乘以,再等式两边对求导,最后令即可;(3)猜测:,利用数学归纳法证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:,令得:,即.(3),,猜测:,当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:利用数学归纳法证明等式时应注意的问题(1)用数学归纳法证明等式其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n0;(2)由n=k到n=k+1时,除等式两边变化的项外还要充分利用n=k时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.19、(1)2x+lnx+1(2)【解题分析】

试题分析:(1)由导数的运算可求得的值;(2)由导数的几何意义可得切线在切点处的斜率,由点斜式可求得直线方程.试题解析:(Ⅰ);(Ⅱ)由题意可知切点的横坐标为1,所以切线的斜率是,所以切线方程为,即.考点:1、求导公式;2、导数的几何意义.【易错点晴】求函数的切线方程的注意事项(1)首先应判断所给点是不是切点,如果不是,要先设出切点.(2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.本题放在解答题的位置,难度不大,是得分的主要题型.20、(1)当时,函数在上单调递增,在上单调递减;当时,函数在上单调递减,在和上单调递增.(2)【解题分析】

(1)对函数求导得到,讨论a和0和1的大小关系,从而得到单调区间;(2)原题等价于对任意,有成立,设,所以,对g(x)求导研究单调性,从而得到最值,进而求得结果.【题目详解】(Ⅰ)函数的定义域为..①若,则当或时,,单调递增;当时,,单调递减;②若,则当时,,单调递减;当时,,单调递增;综上所述,当时,函数在上单调递增,在上单调递减;当时,函数在上单调递减,在和上单调递增.(Ⅱ)原题等价于对任意,有成立,设,所以..令,得;令,得.∴函数在上单调递减,在上单调递增,为与中的较大者.设,则,∴在上单调递增,故,所以,从而.∴,即.设,则.所以在上单调递增.又,所以的解为.∵,∴的取值范围为.【题目点拨】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.21、(1);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论