版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市章丘区高二数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(,e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为()A. B. C. D.2.已知一系列样本点…的回归直线方程为若样本点与的残差相同,则有()A. B. C. D.3.设复数z满足,则z的共轭复数()A. B. C. D.4.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.45.已知,则的展开式中,项的系数等于()A.180 B.-180 C.-90 D.156.如表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为()A.4 B.3.15 C.4.5 D.37.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.8.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.9.()A. B. C. D.10.设x,y满足约束条件,则的最小值是()A. B. C.0 D.111.在平面直角坐标系xOy中,双曲线的x2a2-y2b2=1(a>0,b>0)右支与焦点为FA.y=±22x B.y=±212.已知奇函数在上是单调函数,函数是其导函数,当时,,则使成立的的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为_________________.14.某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:好像是乙或丙去了.”乙说:“甲、丙都没去”丙说:“是丁去了”丁说:“丙说的不对.”若四名员工中只有一个人说的对,则出国研学的员工是___________.15.已知随机变量服从二项分布,那么方差的值为__________.16.将一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则“”的概率是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二阶矩阵对应的变换将点变换成,将点变换成.(1)求矩阵的逆矩阵;(2)若向量,计算.18.(12分)已知复数.(1)若是纯虚数,求;(2)若,求.19.(12分)(1)求过点P(3,4)且在两个坐标轴上截距相等的直线l1(2)求过点A(3,2),且与直线2x-y+1=0垂直的直线l220.(12分)已知椭圆:的左、右焦点分别为,,过原点且斜率为1的直线交椭圆于两点,四边形的周长与面积分别为12与.(1)求椭圆的标准方程;(2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.21.(12分)如图,多面体,平面平面,,,,是的中点,是上的点.(Ⅰ)若平面,证明:是的中点;(Ⅱ)若,,求二面角的平面角的余弦值.22.(10分)某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:月份销售单价(元)销售量(千件)(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?参考公式:回归直线方程,其中.参考数据:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
函数,是自然对数的底数,存在唯一的零点等价于函数与函数只有唯一一个交点,由,,可得函数与函数唯一交点为,的单调,根据单调性得到与的大致图象,从图形上可得要使函数与函数只有唯一一个交点,则,即可解得实数的取值范围.【题目详解】解:函数,是自然对数的底数,存在唯一的零点等价于:函数与函数只有唯一一个交点,,,函数与函数唯一交点为,又,且,,在上恒小于零,即在上为单调递减函数,又是最小正周期为2,最大值为的正弦函数,可得函数与函数的大致图象如图:要使函数与函数只有唯一一个交点,则,,,,解得,又,实数的范围为.故选:.【题目点拨】本题主要考查了零点问题,以及函数单调性,解题的关键是把唯一零点转化为两个函数的交点问题,通过图象进行分析研究,属于难题.2、C【解题分析】
分别求得两个残差,根据残差相同列方程,由此得出正确选项.【题目详解】样本点的残差为,样本点的残差为,依题意,故,所以选C.【题目点拨】本小题主要考查残差的计算,考查方程的思想,属于基础题.3、B【解题分析】
算出,即可得.【题目详解】由得,,所以.故选:B【题目点拨】本题主要考查了复数的除法运算,共轭复数的概念,考查了学生基本运算能力和对基本概念的理解.4、C【解题分析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.5、B【解题分析】分析:利用定积分的运算求得m的值,再根据乘方的几何意义,分类讨论,求得xm﹣2yz项的系数.详解:3sinxdx=﹣3cosx=﹣3(cosπ﹣cos0)=6,则(x﹣2y+3z)m=(x﹣2y+3z)6,xm﹣2yz=x4yz.而(x﹣2y+3z)6表示6个因式(x﹣2y+3z)的乘积,故其中一个因式取﹣2y,另一个因式取3z,剩余的4个因式都取x,即可得到含xm﹣2yz=x4yz的项,∴xm﹣2yz=x4yz项的系数等于故选:B.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等。6、D【解题分析】
因为线性回归方程=0.7x+0.35,过样本点的中心,,故选D.7、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.8、D【解题分析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【题目详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【题目点拨】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.9、C【解题分析】
根据定积分的运算公式,可以求接求解.【题目详解】解:,故选C.【题目点拨】本题考查了定积分的计算,熟练掌握常见被积函数的原函数是解题的关键.10、B【解题分析】
在平面直角坐标系内,画出可行解域,在可行解域内,平行移动直线,直至当直线在纵轴上的截距最大时,求出此时所经过点的坐标,代入目标函数中求出的最小值.【题目详解】在平面直角坐标系内,画出可行解域,如下图:在可行解域内,平行移动直线,当直线经过点时,直线在纵轴上的截距最大,点是直线和直线的交点,解得,,故本题选B.【题目点拨】本题考查了线性规划求目标函数最小值问题,正确画出可行解域是解题的关键.11、A【解题分析】
根据抛物线定义得到yA+y【题目详解】由抛物线定义可得:|AF|+|BF|=y因为x2所以y渐近线方程为y=±2故答案选A【题目点拨】本题考查抛物线,双曲线的渐近线,意在考查学生的计算能力.12、A【解题分析】
将不等式变形,并构造函数,利用导函数可判断在时的取值情况;根据奇函数性质,即可判断当时的符号,进而得解.【题目详解】当时,,即;令,则,由题意可知,即在时单调递减,且,所以当时,,由于此时,则不合题意;当时,,由于此时,则不合题意;由以上可知时,而是上的奇函数,则当时,恒成立,所以使成立的的取值范围为,故选:A.【题目点拨】本题考查了导数与函数单调性的关系,利用构造函数法分析函数单调性,奇函数性质解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求出截面圆的半径,再算截面面积。【题目详解】截面圆半径为,截面面积为。【题目点拨】先求出截面圆的半径,再算截面面积。14、甲【解题分析】
分别假设是甲、乙、丙、丁去时,四个人所说的话的正误,进而确定结果.【题目详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的对,符合题意.故答案为:甲.【题目点拨】本题考查逻辑推理的相关知识,属于基础题.15、【解题分析】分析:随机变量服从二项分布,那么,即可求得答案.详解:随机变量服从二项分布,那么,即.故答案为:.点睛:求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果X~B(n,p),则用公式E(X)=np;D(X)=np(1-p)求解,可大大减少计算量.16、【解题分析】分析:骰子连续抛掷2次共有36种结果,满足的有6种详解:一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则共有种结果,满足共有:(3,1),(4,1),(5,1),(6,1),(5,2),(6,2)6种则”的概率是点睛:古典概型概率要准确求出总的事件个数和基本事件个数,然后根据概率公式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)利用阶矩阵对应的变换的算法解出,再求(2)先计算矩阵的特征向量,再计算详解:(1),则,,解得,,,,所以,所以;(2)矩阵的特征多项式为,令,解得,,从而求得对应的一个特征向量分别为,.令,求得,,所以.点睛:理解矩阵的计算规则和相互之间的转换.18、(1);(2)或1-2i.【解题分析】分析:(1)根据纯虚数的定义得到,解不等式组即得a的值.(2)由题得,解之得a的值,再求.详解:(1)若是纯虚数,则,所以(2)因为,所以,所以或.当时,,当时,.点睛:(1)本题主要考查复数的概念、复数的模和共轭复数,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)复数为纯虚数不要把下面的b≠0漏掉了.19、(1)4x-3y=0或x+y-7=0(2)x+2y-7=0【解题分析】
(1)需分直线过原点,和不过原点两种情况,过原点设直线l1:y=kx,不过原点时,设直线l2:xa+y【题目详解】解:(1)当直线过原点时,直线方程为:4x-3y=0;当直线不过原点时,设直线方程为x+y=a,把点P3,4代入直线方程,解得a=7所以直线方程为x+y-7=0.(2)设与直线l:2x-y+1=0垂直的直线l1的方程为:x+2y+m=0,把点A3,2代入可得,3+2×2=m,解得m=-7.∴过点A3,2,且与直线l垂直的直线l【题目点拨】本题考查了直线方程的求法,属于简单题型.20、(1)(2)【解题分析】
(1)不妨设点是第一象限的点,由四边形的周长求出,面积求出与关系,再由点在直线上,得到与关系,代入椭圆方程,求解即可;(2)先求出直线斜率不存在时,原点到的中垂线的距离,斜率为0时与椭圆只有一个交点,直线斜率存在时,设其方程为,利用与圆相切,求出关系,直线方程与椭圆方程联立,求出中点坐标,得到的中垂线方程,进而求出原点到中垂线的距离表达式,结合关系,即可求出结论.【题目详解】(1)不妨设点是第一象限的点,因为四边形的周长为12,所以,,因为,所以,得,点为过原点且斜率为1的直线与椭圆的交点,即点在直线上,点在椭圆上,所以,即,解得或(舍),所以椭圆的标准方程为.(2)当直线的斜率不存在时,直线为,线段的中垂线为轴,原点到轴的距离为0.当直线的斜率存在时,设斜率为,依题意可设,因为直线与圆相切,所以,设,,联立,得,由,得,又因为,所以,所以,所以的中点坐标为,所以的中垂线方程为,化简,得,原点到直线中垂线的距离,当且仅当,即时,等号成立,所以原点到的中垂线的最大距离为.【题目点拨】本题考查椭圆的标准方程、直线与椭圆的位置关系、点到直线的距离,利用基本不等式求最值,考查逻辑推理、数学计算能力,属于中档题.21、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)利用线面平行的性质定理,可以证明出,,利用平行公理可以证明出,由中位线的性质可以证明出N是DP的中点;(Ⅱ)方法1:在平面ABCD中作于垂足G,过G作于H,连接AH,利用面面垂直和线面垂直,可以证明出为二面角的平面角,在直角三角形中,利用锐角三角函数,可以求出二面角的平面角的余弦值;方法2:由平面平面PBC,可以得到平面PBC,,而即,于是可建立如图空间直角坐标系(C为原点),利用空间向量的数量积,可以求出二面角的平面角的余弦值.【题目详解】(I)设平面平面,因为平面PBC,平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年框架协议:跨国公司区域采购
- 二零二四年度镍矿行业智能开采技术合作合同
- 2024年度原材料供应与成品买卖综合合作协议
- 书画艺术展示租赁合同三篇
- 二零二四年高端装备制造项目融资合同
- 2024年度商务咨询合同:某企业战略咨询服务项目2篇
- 2024年度北京朝阳区写字楼租赁协议
- 2024年度脐橙包装设计:包装设计合同(2024版)
- 二零二四年度茶庄装修设计合同
- 2024年度网络安全审核与评估合同3篇
- 抖音直播知识培训考试题库(含答案)
- 年产2完整版本.5亿粒胶囊生产车间工艺的设计说明
- 2024年广东省广州市荔湾区中考一模英语试题(无答案)
- 现代农业创新与乡村振兴战略智慧树知到期末考试答案2024年
- MOOC 数学文化十讲-南开大学 中国大学慕课答案
- (高清版)WST 347-2024 血细胞分析校准指南
- 新生儿咽下综合征护理查房
- 小学食品安全教育课件
- 2024年深圳市机场集团有限公司招聘笔试参考题库附带答案详解
- EPC项目采购阶段质量保证措施
- 设备安装调试服务协议书
评论
0/150
提交评论