版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省镇江市淮州中学数学高二下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值,这可以通过方程确定出来,类似地,可得的值为()A. B. C. D.2.如图所示的流程图中,输出的含义是()A.点到直线的距离B.点到直线的距离的平方C.点到直线的距离的倒数D.两条平行线间的距离3.已知数列的前项和为,,,则()A.128 B.256 C.512 D.10244.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合CUA.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}5.已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是()A. B. C. D.6.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.7.已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若椭圆离心率,则双曲线的离心率()A. B. C.3 D.48.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为()A. B. C. D.9.已知,则的最小值是A. B. C. D.10.如果根据是否爱吃零食与性别的列联表得到,所以判断是否爱吃零食与性别有关,那么这种判断犯错的可能性不超过()注:0.1000.0500.0250.0100.001k2.7063.8415.0246.63510.828A.2.5% B.0.5% C.1% D.0.1%11.“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大.假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是()A.3 B.4 C.5 D.612.有件产品,其中件是次品,从中任取件,若表示取得次品的件数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据如图所示的伪代码可知,输出的结果为______.14.若对满足的任意正实数,都有,则实数的取值范围为____________.15.数列的前n项和记为,则__________.16.已知命题:,为真命题,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四边形中,,.已知,.(1)求的值;(2)若,且,求的长.18.(12分)已知函数.(1)求的最小值;(2)证明:对一切,都有成立.19.(12分)某地为了调查市民对“一带一路”倡议的了解程度,随机选取了100名年龄在20岁至60岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:年龄20,3030,4040,5050,60调查人数/名30302515了解“一带一路”倡议/名1228155(I)完成下面的2×2列联表,并判断是否有90%的把握认为以40岁为分界点对“一带一路”倡议的了解有差异(结果精确到0.001);年龄低于40岁的人数年龄不低于40岁的人数合计了解不了解合计(Ⅱ)以频率估计概率,若在该地选出4名市民(年龄在20岁至60岁),记4名市民中了解“一带一路”倡议的人数为X,求随机变量X的分布列,数学期望和方差.附:P0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635K2=n20.(12分)设函数,.(1)解不等式;(2)设函数,且在上恒成立,求实数的取值范围.21.(12分)选修4-5:不等式选讲设函数.(Ⅰ)解不等式>2;(Ⅱ)求函数的最小值.22.(10分)已知函数,.(1)当时,求的极值;(2)若且对任意的,恒成立,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
设,可得,求解即可.【题目详解】设,则,即,解得,取.故选B.【题目点拨】本题考查了类比推理,考查了计算能力,属于基础题.2、A【解题分析】
将代入中,结合点到直线的距离公式可得.【题目详解】因为,,所以,故的含义是表示点到直线的距离.故选A.【题目点拨】本题考查了程序框图以及点到直线的距离公式,属基础题.3、B【解题分析】
Sn+1=2Sn﹣1(n∈N+),n≥2时,Sn=2Sn﹣1﹣1,相减可得an+1=2an.再利用等比数列的通项公式即可得出.【题目详解】∵Sn+1=2Sn﹣1(n∈N+),n≥2时,Sn=2Sn﹣1﹣1,∴an+1=2an.n=1时,a1+a2=2a1﹣1,a1=2,a2=1.∴数列{an}从第二项开始为等比数列,公比为2.则a101×28=3.故选:B.【题目点拨】本题考查了数列递推关系、等比数列通项公式,考查了推理能力与计算能力,属于基础题.4、D【解题分析】试题分析:因为A∪B={x|x≤0或x≥1},所以CU考点:集合的运算.5、D【解题分析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若a>b,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.6、C【解题分析】分析:由七巧板的构造,设小正方形的边长为1,计算出黑色平行四边形和黑色等腰直角三角形的面积之和.详解:设小正方形的边长为1,可得黑色平行四边形的底为高为;黑色等腰直角三角形的直角边为2,斜边为2,大正方形的边长为2,所以,故选C.点睛:本题主要考查几何概型,由七巧板的构造,设小正方形的边长为1,通过分析观察,求得黑色平行四边形的底和高,以及求出黑色等腰直角三角形直角边和斜边长,进而计算出黑色平行四边形和黑色等腰直角三角形的面积之和,再将黑色部分面积除以大正方形面积可得概率,属于较易题型.7、B【解题分析】
设,,由椭圆和双曲线的定义,解方程可得,,再由余弦定理,可得,与的关系,结合离心率公式,可得,的关系,计算可得所求值.【题目详解】设,,为第一象限的交点,由椭圆和双曲线的定义可得,,解得,,在三角形中,,可得,即有,可得,即为,由,可得,故选.【题目点拨】本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,考查化简整理的运算能力,属于中档题.8、B【解题分析】令,,所以函数是减函数,又,所以不等式的解集为本题选择B选项.9、B【解题分析】
将代数式与代数式相乘,展开后利用基本不等式求出代数式的最小值,然后在不等式两边同时除以可得出答案.【题目详解】因为,又,所以,当且仅当时取,故选B.【题目点拨】本题考查利用基本不等式求代数式的最值,在利用基本不等式求最值时,要注意配凑“定值”的条件,注意“一正、二定、三相等”基本思想的应用.10、A【解题分析】
根据得到,得到答案.【题目详解】,故,故判断“是否爱吃零食与性别有关”出错的可能性不超过2.5%.故选:.【题目点拨】本题考查了独立性检验问题,意在考查学生的理解能力和应用能力.11、B【解题分析】
设这个人团队解决项目的概率为,则,由,得,由此能求出的最小值.【题目详解】李某智商较高,他独自一人解决项目的概率为,有个水平相同的人也在研究项目,他们各自独立地解决项目的概率都是0.1,现在李某单独研究项目,且这个人组成的团队也同时研究,设这个人团队解决项目的概率为,则,,,解得.的最小值是1.故选.【题目点拨】本题考查实数的最小值的求法,考查次独立重复试验中事件恰好发生次的概率的计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12、B【解题分析】
由题意,知取0,1,2,3,利用超几何分布求出概率,即可求解.【题目详解】根据题意,故选:B.【题目点拨】本题考查利用超几何分布求概率,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、72【解题分析】
模拟程序的运行,依次写出每次循环得到的的值,可得当时不满足条件,退出循环,输出的值为72.【题目详解】模拟程序的运行,可得满足条件,执行循环体,满足条件,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,,;不满足条件,退出循环,输出的值为72,故答案为72【题目点拨】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.14、【解题分析】分析:正实数满足,可求得,由可求得恒成立,利用双钩函数性质可求得a的取值范围.详解:因为,又因为正实数满足解得:由可求得根据双钩函数性质可知,当时有最小值所以的取值范围为点睛:(1)基本不等式是每年高考中必考的考点,要熟练掌握;(2)恒成立问题要注意首选方法是分离参数,将参数分离后让不等式的另一边构造为一个新函数,从而解决新函数的最值是这类问题的基本解题思路.15、【解题分析】试题分析:由可得:,所以,则数列是等比数列,首项为3,公比为3,所以。考点:数列求通项公式。16、【解题分析】分析::,为真命题,则详解:已知命题:,为真命题,则实数的取值范围为.即答案为点睛:本题考查当特称命题为真时参数的取值范围,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)在中,由正弦定理可得答案;(Ⅱ)由结合(Ⅰ)可得,在中,由余弦定理得BC值.【题目详解】(Ⅰ)在中,由正弦定理,得.因为,所以(Ⅱ)由(Ⅰ)可知,,因为,所以.在中,由余弦定理,得.因为所以,即,解得或.又,则.【题目点拨】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力,属于基础题.18、(I).(Ⅱ)见解析.【解题分析】
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)对一切,都有成立,即,结合(1)中结论可知,构造新函数,分析其最大值,可得答案.【题目详解】(1)的定义域为,的导数.令,解得;令,解得.从而在单调递减,在,单调递增.所以,当时,取得最小值.(2)若则,由(1)得:,当且仅当时,取最小值;设,则,时,,单调递增,时,,单调递减,故当时,取最大值故对一切,都有成立.【题目点拨】本题考查的知识点是函数在某点取得极值的条件,导数在最值问题中的应用,属于难题.19、(Ⅰ)填表见解析,有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异(Ⅱ)见解析【解题分析】
(1)由表格读取信息,年龄低于40岁的人数共60人,年龄不低于40岁的人数,代入K2(2)在总体未知的市民中选取4人,每位市民被选中的概率由频率估计概率算出35,所以随机变量X服从二项分布【题目详解】解:(Ⅰ)根据已知数据得到如下列联表年龄低于40岁的人数年龄不低于40岁的人数合计了解402060不了解202040合计6040100K故有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异.(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为60100=3PX=0=C40PX=3=C则X的分布列为X01234P169621621681EX=4×3【题目点拨】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.20、(1);(2)【解题分析】试题分析:本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明以及解法等内容.(1)利用数轴分段法求解;(2)借助数形结合思想,画出两个函数的图像,通过图像的上下位置的比较,探求在上恒成立时实数的取值范围.试题解析:(1)由条件知,由,解得.(5分)(2)由得,由函数的图像可知的取值范围是.(10分)考点:(1)绝对值不等式;(2)不等式证明以及解法;(3)函数的图像.21、(Ⅰ)的解集为.(Ⅱ)最小值【解题分析】
解:(Ⅰ)令,则作出函数的图像,它与直线的交点为和.所以的解集为(Ⅱ)由函数的图像可知,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024市集体合同范本范文
- 海洋工程施工安全与生态保护方案
- 办公室饮水机安装方案
- 城市绿化养护人员招聘与绩效考核方案
- 工业厂房外墙保温施工方案
- 2022年-2023年三支一扶之公共基础知识检测试卷B卷(附答案)
- 课件片头制作教学课件
- 教心含见习学习通超星期末考试答案章节答案2024年
- 中央厨房明厨亮灶标准化制度
- 2024年二手锅炉采购条件
- 2024中国东方航空技术限公司全球校园招聘高频难、易错点500题模拟试题附带答案详解
- 2024年西藏自治区中考道德与法治试题卷(含答案解析)
- 2024版七年级英语上册单词表
- 小学高年级课后服务 scratch3.0编程教学设计 一阶第6课 愤怒的小鸟3.0 教学设计
- 《糖尿病足感染诊断治疗指南》解读及进展课件
- 小学生主题班会奥运精神开学第一课(课件)
- 新解读《JTG 5120-2021公路桥涵养护规范》
- 我们喜欢的动画片(课件)三年级上册综合实践活动教科版
- 2024年秋季学期新人教版七年级上册英语课件 Unit 4 My Favourite Subject(第4课时)SectionB 1a-1d
- 读书分享课件:《一句顶一万句》
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
评论
0/150
提交评论