2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题含解析_第1页
2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题含解析_第2页
2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题含解析_第3页
2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题含解析_第4页
2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市普通高中数学高二第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值,这可以通过方程确定出来,类似地,可得的值为()A. B. C. D.2.己知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当取最大值时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为A. B. C. D.3.唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙。”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件4.正四棱锥的顶点都在同一球面上,若该棱锥的高和底面边长均为,则该球的体积为A. B. C. D.5.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩X~N(85,9),若已知,则从哈尔滨市高中教师中任选一位教师,他的培训成绩大于90的概率为()A.0.85 B.0.65 C.0.35 D.0.156.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.7.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=8.已知复数且,则的范围为()A. B.C. D.9.中,,是的中点,若,则().A. B. C. D.10.用数学归纳法证明某命题时,左式为在验证时,左边所得的代数式为()A.B.C.D.11.已知双曲线与双曲线,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等12.已知集合,,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.__________.14.已知三棱锥的底面是等腰三角形,,底面,,则这个三棱锥内切球的半径为_______.15.若,则在的展开式中,项的系数为_________16.设过抛物线上任意一点(异于原点)的直线与抛物线交于,两点,直线与抛物线的另一个交点为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,,分别为椭圆的左、右焦点,点在椭圆上.(1)求的方程;(2)若直线与椭圆相交于,两点,试问:在轴上是否在点,当变化时,总有?若存在求出点的坐标,若不存在,请说明理由.18.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)曲线与相交于两点,求过两点且面积最小的圆的标准方程.19.(12分)某市交通管理有关部门对年参加驾照考试的岁以下的学员随机抽取名学员,对他们的科目三(道路驾驶)和科目四(安全文明相关知识)进行两轮测试,并把两轮成绩的平均分作为该学员的抽测成绩,记录数据如下:学员编号科目三成绩科目四成绩(1)从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;(2)根据规定,科目三和科目四测试成绩均达到分以上(含分)才算合格,从抽测的到号学员中任意抽取两名学员,记为抽取学员不合格的人数,求的分布列和数学期望.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,证明:对任意的,.21.(12分)已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.22.(10分)过点作倾斜角为的直线与曲线交于点,求的最小值及相应的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

设,可得,求解即可.【题目详解】设,则,即,解得,取.故选B.【题目点拨】本题考查了类比推理,考查了计算能力,属于基础题.2、B【解题分析】

根据题目可知,过作准线的垂线,垂足为,则由抛物线的定义,结合,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,即可求出的的坐标,再利用双曲线的定义,即可求得双曲线得离心率。【题目详解】由题意知,由对称性不妨设P点在y轴的右侧,过作准线的垂线,垂足为,则根据则抛物线的定义,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,设直线的方程为,与联立,得,令,解得可得,又此时点P恰好在以A、B为焦点的双曲线上双曲线的实轴故答案选B。【题目点拨】本题主要考查了双曲线与抛物线的性质的应用,在解决圆锥曲线相关问题时常用到方程思想以及数形结合思想。3、A【解题分析】

根据命题的“真、假”,条件与结论的关系即可得出选项。【题目详解】不到蓬莱不成仙,成仙到蓬莱,“成仙”是到“到蓬莱”的充分条件,但“到蓬莱”是否“成仙”不确定,因此“成仙”是“到蓬莱”的充分非必要条件。故选:A【题目点拨】充分、必要条件有三种判断方法:1、定义法:直接判断“若则”和“若则”的真假。2、等假法:利用原命题与逆否命题的关系判断。3、若,则A是B的充分条件或B是A的必要条件;若,则A是B的充要条件。4、A【解题分析】分析:设球的半径为R,再根据图形找到关于R的方程,解方程即得R的值,再求该球的体积.详解:设球的半径为R,由题得所以球的体积为.故答案为:A.点睛:(1)本题主要考查球的内接几何体问题和球的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)解题的关键是从图形中找到方程.5、D【解题分析】

先求出,再求出培训成绩大于90的概率.【题目详解】因为培训成绩X~N(85,9),所以2×0.35=0.7,所以P(X>90)=,所以培训成绩大于90的概率为0.15.故答案为:D.【题目点拨】(1)本题主要考查正态分布,意在考查学生对该知识的掌握水平.(2)解答正态分布问题,不要死记硬背,要根据函数的图像和性质解答.6、C【解题分析】

根据程序图,当x<0时结束对x的计算,可得y值.【题目详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【题目点拨】本题考查程序框图,是基础题.7、A【解题分析】

设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【题目详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.【题目点拨】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8、C【解题分析】

转化为,设,即直线和圆有公共点,联立,即得解.【题目详解】由于设联立:由于直线和圆有公共点,故的范围为故选:C【题目点拨】本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.9、D【解题分析】

作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【题目详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.【题目点拨】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.10、B【解题分析】试题分析:用数学归纳法证明某命题时,左式为在验证时,左边所得的代数式应为;故选B考点:数学归纳法.11、D【解题分析】

根据题意,由两个双曲线的方程计算出两个双曲线的焦点坐标,焦距,渐近线方程以及离心率,进而分析选项即可得到答案。【题目详解】根据题意,双曲线,其中,,则,则焦距,焦点坐标,渐近线方程为,离心率;双曲线,其标准方程为,其中,,则,则焦距,焦点坐标,渐近线为,离心率;据此依次分析选项:两个双曲线的焦距均为,故A正确;双曲线的焦点坐标,双曲线的焦点坐标,都在圆上,故B正确;渐近线方程均为,故C正确;双曲线的离心率,双曲线的离心率,离心率不相等,故选D【题目点拨】本题考查双曲线的基本性质,解题时要注意将双曲线的方程变为标准形式,属于基础题。12、C【解题分析】

利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可.【题目详解】因为,,所以,故选C.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用指数和对数的运算即可求解.【题目详解】故答案为:【题目点拨】本题主要考查了指数与对数的运算,属于基础题.14、【解题分析】分析:利用等体积法,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得求出r,再根据球的体积公式即可求出.详解:∵AB⊥AC,PA⊥底面ABC,PA=AB=1,∴∴S△ABC=×AC×BC=×1×1=,S△PAC=×AC×PA=S△PAB=×AB×PA=,S△PCB==,∴VP﹣ABC=×PA•S△ABC=,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得r=.故答案为.点睛:(1)本题主要考查几何体的内切球问题,意在考查学生对这些知识的掌握水平和空间想象能力分析推理能力.(2)求几何体的内切球的半径一般是利用割补法和等体积法.15、【解题分析】分析:由定积分求得,写出二项展开式的通项为,进而可求解的系数.详解:由,所以二项式为,则二项式的展开式的通项为,当时,,即的系数为.点睛:本题主要考查了定积分的计算和二项式定理的应用,其中熟记微积分基本定理和二项展开式的通项的合理运用是解答的关键,着重考查了推理和运算能力.16、【解题分析】分析:画出图形,将三角形的面积比转化为线段的长度比,之后转化为坐标比,设出点的坐标,写出直线的方程,联立方程组,求得交点的坐标,最后将坐标代入,求得比值,详解:画出对应的图就可以发现,设,则直线,即,与联立,可求得,从而得到面积比为,故答案是3.点睛:解决该题的关键不是求三角形的面积,而是应用面积公式将面积比转化为线段的长度比,之后将长度比转化为坐标比,从而将问题简化,求得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】

(1)根据离心率为,点在椭圆上联立方程组解得答案.(2)设存在定点,联立方程,利用韦达定理得到关系式,推出,代入数据计算得到答案.【题目详解】解:(1)由题可知又,解得,,所以,,即所求为(2)设存在定点,并设,由联立消可得所以,因为,所以,即所以,整理为所以可得即,所以所以存在定点满足题意【题目点拨】本题考查了椭圆离心率,定点问题,将转化为是解题的关键.18、(1)曲线的普通方程为,的直角坐标方程为;(2)【解题分析】试题分析:(1)利用消参和极坐标公式,化参数方程和极坐标方程为普通方程;(2)直线和椭圆相交,联立求中点即为圆心,弦长即为直径,所以过两点且面积最小的圆的标准方程为.试题解析:(1)由消去参数,得,即曲线的普通方程为,由,得,即,即.即曲线的直角坐标方程为;(2)过两点且面积最小的圆是以线段为直径的圆,令.由,得,所以,所以圆心坐标为,又因为半径,所以过两点且面积最小的圆的标准方程为.19、(1);(2)见解析.【解题分析】

(1)根据表格中的数据得出个学员中抽测成绩中大于或等于分的人数,然后利用古典概型的概率公式可计算出所求事件的概率;(2)先根据表格中的数据得出到号学员合格与不合格的人数,可得知随机变量的可能取值有、、,然后再根据超几何分布的概率公式计算出随机变量在相应取值时的概率,并列出分布列,结合数学期望公式可计算出的值.【题目详解】(1)学员抽测成绩大于或等于分的有个,从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;(2)号至号学员中有个合格,个不合格,的可能取值为、、,,,,的分布列为:因此,随机变量的数学期望为.【题目点拨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论