版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省肇庆第四中学数学高二第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示的电路有a,b,c,d四个开关,每个开关断开与闭合的概率均为且是相互独立的,则灯泡甲亮的概率为()A. B. C. D.2.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g(x)=Acosωx的图象,只需把y=f(x)的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度3.定积分的值为()A. B. C. D.4.若复数满足,则复数为()A. B. C. D.5.已知向量||=,且,则()A. B. C. D.6.广告投入对商品的销售额有较大影响,某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)广告费23456销售额2941505971由上表可得回归方程为,据此模型,预测广告费为10万元时销售额约为()A.118.2万元 B.111.2万元 C.108.8万元 D.101.2万元7.下列命题是真命题的为()A.若,则 B.若,则C.若,则 D.若,则8.若随机变量服从正态分布,则()附:随机变量,则有如下数据:,,.A. B. C. D.9.已知是离散型随机变量,,,,则()A. B. C. D.10.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.4811.给出下列四个命题,其中真命题的个数是()①回归直线y=bx+a②“x=6”是“x2③“∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”也是真命题.A.0B.1C.2D.312.扇形OAB的半径为1,圆心角为120°,P是弧AB上的动点,则的最小值为()A. B.0 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面上,,,.若,则的取值范围是_______.14.若,则的值为__________.15.如图,在平面四边形中,,,,.若点为上的动点,则的最小值为______.16.已知函数f(x)=e2x+2f(0)ex﹣f′(0)x,f′(x)是f(x)的导函数,若f(x)≥x﹣ex+a恒成立,则实数a的取值范围为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若,求随机变量X的分布列与均值.18.(12分)如图所示:在底面为直角梯形的四棱锥中,,面,E、F分别为、的中点.如果,,与底面成角.(1)求异面直线与所成角的大小(用反三角形式表示);(2)求点D到平面的距离.19.(12分)设(Ⅰ)求的单调区间.(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在求出的最小值,若不存在,说明理由.20.(12分)已知函数,;.(1)求的最大值;(2)若对,总存在使得成立,求的取值范围;(3)证明不等式.21.(12分)为了适应高考改革,某中学推行“创新课堂”教学。高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.参考公式临界值表22.(10分)已知定义在上的函数.求函数的单调减区间;Ⅱ若关于的方程有两个不同的解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
由独立事件同时发生的概率公式计算.把组成一个事整体,先计算它通路的概率.【题目详解】记通路为事件,则,所以灯泡亮的概率为.故选:C.【题目点拨】本题考查相互独立事件同时发生的概率,由独立事件的概率公式计算即可.2、B【解题分析】
由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【题目详解】根据函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象,可得A=1,,∴ω=1.再根据五点法作图可得1×+φ=π,求得φ=,∴函数f(x)=sin(1x+).故把y=f(x)的图象上所有的点向左平移个单位长度,可得y=sin(1x++)=cos1x=g(x)的图象.故选B.【题目点拨】确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法:(1)求A,b,确定函数的最大值M和最小值m,则A=,b=;(1)求ω,确定函数的最小正周期T,则可得ω=;(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=;“最小值点”(即图象的“谷点”)时ωx+φ=.3、C【解题分析】试题分析:=.故选C.考点:1.微积分基本定理;2.定积分的计算.4、D【解题分析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由,
得.
故选D.【题目点拨】本题考查复数代数形式的乘除运算,是基础的计算题.5、C【解题分析】
由平面向量模的运算可得:0,得,求解即可.【题目详解】因为向量||,所以0,又,所以2,故选C.【题目点拨】本题考查了平面向量模的运算,熟记运算性质是关键,属基础题.6、B【解题分析】分析:平均数公式可求出与的值,从而可得样本中心点的坐标,代入回归方程求出,再将代入回归方程得出结论.详解:由表格中数据可得,,,解得,回归方程为,当时,,即预测广告费为10万元时销售额约为,故选B.点睛:本题考查了线性回归方程的性质与数值估计,属于基础题.回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.7、A【解题分析】试题分析:B若,则,所以错误;C.若,式子不成立.所以错误;D.若,此时式子不成立.所以错误,故选择A考点:命题真假8、B【解题分析】
先将、用、表示,然后利用题中的概率求出的值.【题目详解】由题意可知,,则,,,因此,,故选B.【题目点拨】本题考查利用正态分布原则求概率,解题时要将相应的数用和加以表示,并利用正态曲线的对称性列式求解,考查计算能力,属于中等题.9、A【解题分析】分析:由已知条件利用离散型随机变量的数学期望计算公式求出a,进而求出,由此即可求出答案.详解:是离散型随机变量,,,,由已知得,解得,,.故选:A.点睛:本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望和方差计算公式的合理运用.10、D【解题分析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.11、B【解题分析】归直线y=bx+a②“x=6”是“x2③∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”当p,q都真时是假命题.不正确12、C【解题分析】
首先以与作为一组向量基底来表示和,然后可得,讨论与共线同向时,有最大值为1,进一步可得有最小值.【题目详解】由题意得,,所以因为圆心角为120°,所以由平行四边形法则易得,所以当与共线同向时,有最大值为1,此时有最小值.故选:C.【题目点拨】本题主要考查平面向量的数量积,选择合适的基底表示相关的向量是求解的关键,侧重考查数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
本题可以通过建立平面直角坐标系,将给的向量条件坐标化,然后把所求的也用坐标表示出来,最后根据式子采用适当的方法得出结果.【题目详解】设,则有因为所以①②③因为所以①+②得即由①②可知带入③中可知综上可得所以,的取值范围是.【题目点拨】在做向量类的题目的时候,可以通过构造直角坐标系,用点的坐标来表示向量以及向量之间的关系,借此来得出答案.14、84.【解题分析】分析:根据原式右边的展开情况可将原式左边写成:然后根据二项式定理展开求(x-1)3的系数即可.详解:由题可得:,故根据二项式定理可知:故答案为84.点睛:本题考查二项式定理的运用,注意运用变形和展开式的通项公式,考查方程思想和运算能力,属于基础题.15、【解题分析】
建立直角坐标系,得出,,利用向量的数量积公式即可得出,结合,得出的最小值.【题目详解】因为,所以以点为原点,为轴正方向,为轴正方向,建立如图所示的平面直角坐标系,因为,所以,又因为,所以直线的斜率为,易得,因为,所以直线的斜率为,所以直线的方程为,令,解得,所以,设点坐标为,则,则,,所以又因为,所以当时,取得最小值为.【题目点拨】本题主要考查平面向量基本定理及坐标表示、平面向量的数量积以及直线与方程.16、(﹣∞,0].【解题分析】
令,得到,再对求导,然后得到,令,得到,再得到,然后对,利用参变分离,得到,再利用导数求出的最小值,从而得到的取值范围.【题目详解】因为所以令得,即,而令得,即所以则整理得设,则令,则所以当时,,单调递增,当时,,单调递减,所以所以的范围为,故答案为.【题目点拨】本题考查了利用导数研究函数的单调性和最值,考查了转化思想和函数思想,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】
根据该毕业生得到面试的机会为0时的概率,求出乙、丙公司面试的概率,根据题意得到X的可能取值,结合变量对应的事件写出概率得出分布列及期望.【题目详解】∵P(X=0),∴,∴p,由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,P(X=1)P(X=2),P(X=3)=1,X0123P∴E(X),【题目点拨】本题考查离散型随机变量的分布列和期望,准确计算是关键,是一个基础题.18、(1);(2)【解题分析】
(1)先确定与底面所成角,计算SA,再建立空间直角坐标系,利用向量数量积求异面直线与所成角;(2)先求平面的一个法向量,再利用向量投影求点D到平面的距离.【题目详解】(1)因为面,所以是与底面所成角,即,因为,以为坐标原点,所在直线分别为x,y,z轴建立空间直角坐标系,则,从而,,因此所以异面直线与所成角为,(2)设平面的一个法向量为,因为,所以令,从而点D到平面的距离为【题目点拨】本题考查线面角以及利用向量求线线角与点面距,考查综合分析求解能力,属中档题.19、(Ⅰ)详见解析;(Ⅱ)0.【解题分析】
(Ⅰ)对分三种情况讨论,利用导数求的单调区间;(Ⅱ)先求出函数h(x)在上单调递减,在上单调递增,再求出,即得解.【题目详解】解:(I)时,令令故在单调递增,在上单调递减;0≤≤1时,恒成立,故在单调递增.时,令令故在单调递减,在上单调递增;综上:在单调递增,在上单调递减;时在单调递增.时,在单调递减,在上单调递增.(II)当时,由于在上单调递增且故唯一存在使得即故h(x)在上单调递减,在上单调递增,故又且在上单调递增,故即依题意:有解,故又故【题目点拨】本题主要考查利用导数求函数的单调区间,考查利用导数研究不等式存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、【解题分析】试题分析:(1)对函数求导,,时,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,也是最大值,所以的最大值为;(2)若对,总存在使得成立,则转化为,由(1)知,问题转化为求函数在区间上的最大值,对求导,,分类讨论,当时,函数在上恒成立,在上单调递增,只需满足,,解得,所以;当时,时,(舍),当时,在上恒成立,只需满足,,解得,当,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,可以求出的取值范围。(3)由(1)知:即,取,∴,∴,即∴,等号右端为等比数列求和。试题解析:(1)∵,∴,∴当时,,时,,∴,∴的最大值为.(2),使得成立,等价于由(1)知,,当时,在时恒为正,满足题意.当时,,令,解得,∴在上单调递减,在上单调递增,若,即时,,∴,∴.若,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,综上的取值范围为.(3)由(1)知:即,取,∴,∴,即∴.考点:1.导数与函数的单调性和极值;2.导数的综合应用。21、(1)列联表见解析;有以上的把握认为“成绩优秀与教学方式有关”;(2)【解题分析】
(1)根据频数表可补充列联表,从而计算求得,得到有以上的把握;(2)首先确定所有可能的取值,分别计算每个取值对应的概率,进而得到分布列;根据数学期望计算公式求得期望.【题目详解】(1)补充的列联表如下表:传统教学创新教学总计成绩优秀成绩不优秀
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农产品销售合同协议范本
- 招标文件房产项目
- 版短期无担保个人
- 第三方支付保证金协议
- 知识产权顾问合同的争议解决方法分享
- 学生健康饮食承诺保证书
- 装饰拆除改造合同
- 道具采购合同范本中文模板样式
- 导购员合同协议的交通补贴
- 幼儿园食品订购合同范本
- NB-T47003.1-2009钢制焊接常压容器(同JB-T4735.1-2009)
- 聚焦高质量+探索新高度+-2025届高考政治复习备考策略
- 惠州市惠城区2022-2023学年七年级上学期期末教学质量检测数学试卷
- 北京市西城区2022-2023学年七年级上学期期末英语试题【带答案】
- ISO45001-2018职业健康安全管理体系之5-4:“5 领导作用和工作人员参与-5.4 工作人员的协商和参与”解读和应用指导材料(2024A0-雷泽佳)
- 看图猜成语共876道题目动画版
- 小学二年级上册数学-数角的个数专项练习
- 曲式与作品分析智慧树知到期末考试答案章节答案2024年兰州文理学院
- 园林设施维护方案
- 特种设备使用单位日管控、周排查、月调度示范表
- 供应链成本控制与降本增效
评论
0/150
提交评论