版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量经济学数学基础概率论与数理统计概率与数理统计基础
概率论与数理统计是研究和揭示随机现象统计规律性的数学分支。主要包括:随机事件和概率、随机变量的分布和数字特征、中心极限定理和大数定理、抽样分布、统计估计、假设检验、回归分析等。概率与数理统计基础主要内容1.基本概念2.对总体的描述——随机变量的数字特征3.对样本的描述——样本分布的数字特征4.随机变量的分布5.通过样本,估计总体——估计量的特征6.通过样本,估计总体——估计方法7.通过样本,估计总体——假设检验概率与数理统计基础第一节基本概念总体和个体样本和样本容量随机变量统计量概率与数理统计基础1.1总体、个体、样本和样本容量研究对象的全体称为总体或母体,通常指研究对象的某项数量指标;组成总体的每个基本单位称为个体。从总体X中抽出若干个个体称为样本,一般记为(X1,X2,…,Xn)。n称为样本容量。而对这n个个体的一次具体的观察结果——(x1,x2,…,xn)是完全确定的一组数值,但它又随着每次抽样观察而改变。(x1,x2,…,xn)称为样本观察值。注意:抽样是按随机原则选取的,即总体中每个个体有同样的机会被选入样本。概率与数理统计基础
当人们在一定条件下对某一现象加以观察时,观察到的结果是多个可能结果中的某一个,且在每次观察前都无法预知观测结果到底是哪一个,即结果的出现呈现出偶然性,但是所有可能出现的结果是知道的。随机现象具有偶然性一面,也有必然性一面。偶然性一面表现在“对随机现象做一次观测时,观测结果具有偶然性(不可预知性)”;必然性一面表现在“对随机现象进行大量重复观测,观测结果有一定的规律性,亦即统计规律性”。
具有不确定性(或随机性、偶然性)的现象称为随机现象。特点:随机现象定义:概率与数理统计基础随机试验举例:
E1:掷一颗骰子,观察所掷的点数是几;
E2:观察某城市某个月内交通事故发生的次数;
E3:对某只灯泡做试验,观察其使用寿命;
E4:对某只灯泡做试验,观察其使用寿命是否小于200小时。在实际问题中,随机试验的结果可以用数量来表示,由此就产生了随机变量的概念概率与数理统计基础
有些试验结果本身与数值有关(本身就是一个数).
例如,掷一颗骰子面上出现的点数;
七月份济南的最高温度;每天从济南下火车的人数;昆虫的产卵数;它随试验结果的不同而取不同的值,因而在试验之前只知道它可能取值的范围,而不能预先肯定它将取哪个值。由于试验结果的出现具有一定的概率,于是这种实值函数取每个值和每个确定范围内的值也有一定的概率。概率与数理统计基础1.2随机变量根据概率不同而取不同数值的变量称为随机变量。一个随机变量具有这样的特性:可以取许多不同的数值,取每一个数值都有相应的概率p,0≤p≤1。概率与数理统计基础总体、随机变量、样本间的联系样本就是一个随机变量,所谓“样本容量为n的样本”就是n个相互独立且与总体有相同分布的随机变量X1,X2,…,Xn每一次具体抽样所得的数据,就是n元随机变量的一个观察值,记为X1,X2,…,Xn样本是总体的一部分。总体一般是未知的。一般要通过样本才能部分地推知总体的情况。概率与数理统计基础1.3统计量由样本值去推断总体情况,需要对样本值进行“加工”,这就要构造一些样本的函数,它把样本中所含的(某一方面)的信息集中起来。设(x1,x2,…,xn)为一组样本观察值,函数y=f(x1,x2,…,xn)若不含有未知参数,这种不含任何未知参数的样本的函数称为统计量。它是完全由样本决定的量。统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量。几个常见统计量样本均值:样本方差:概率与数理统计基础第二节对总体的描述
——随机变量的数字特征2.1数学期望2.2方差2.3协方差概率与数理统计基础2.1.1数学期望:实际上就是一个加权平均值,描述随机变量的集中程度。数学期望描述随机变量(总体)的一般水平。定义1离散型随机变量数学期望的定义假定有一个离散型随机变量X有n个不同的可能取值x1,x2,……,xn,而p1,p2,……,pn是X取这些值相应的概率,则这个随机变量X的数学期望定义如下:概率与数理统计基础定义2连续型随机变量数学期望的定义概率与数理统计基础2.1.2数学期望的性质:(1)如果a、b为常数,则
E(aX+b)=aE(X)+b(2)如果X、Y为两个随机变量,则
E(X+Y)=E(X)+E(Y)(3)如果g(x)和f(x)分别为X的两个函数,则
E[g(X)+f(X)]=E[g(X)]+E[f(X)](4)如果X、Y是两个独立的随机变量,则
E(X.Y)=E(X).E(Y)概率与数理统计基础2.2.1方差的定义离均差的定义若随机变量X的数学期望E(X)存在,称[X-E(X)]为随机变量X的离均差。方差的定义离均差的平方的数学期望。设X是随机变量,若E{[X-EX]2}存在,则称E{[X-EX]2}为随机变量X的方差,记为D(X)或Var(X),即
D(X)=E{[X-EX]2}
方差的算术平方根称为随机变量X的均方差或标准差。概率与数理统计基础2.2.2方差的意义离均差和方差都是用来描述随机变量离散程度的,即描述x对于它的数学期望的偏离程度,这种偏差越大,表明变量的取值越分散。一般情况下,常用方差来描述离散程度。因为离均差的和为零,无法体现随机变量的总离散程度。事实上正偏差大或负偏差大,同样是离散程度大。方差中由于有了平方,从而消除了正负号的影响,并易于加总,也易于强调大的偏离程度的突出作用。概率与数理统计基础2.2.3方差的性质:(1)Var(c)=0(2)Var(c+x)=Var(x)(3)Var(cx)=c2Var(x)(4)Var(x-y)=Var(x)+Var(y)-2cov(x,y)Var(x+y)=Var(x)+Var(y)+2cov(x,y)(5)Var(a+bx)=b2Var(x)(6)a,b为常数,x,y为两个相互独立的随机变量,则Var(ax+by)=a2Var(x)+b2Var(y)(7)Var(x)=E(x2)-(E(x))2概率与数理统计基础
2.3协方差Cov(X,Y)=E[(X-EX)(Y-EY)]Cov(X,Y)=E(XY)-E(X)E(Y)(积的期望减期望的积)概率与数理统计基础第三节对样本的描述
——样本分布的数字特征样本均值反映样本集中程度样本方差样本标准差描述样本离散程度概率与数理统计基础第四节随机变量的分布
4.1正态分布4.2t分布4.3卡方分布4.4F分布概率与数理统计基础4.1正态分布概率与数理统计基础正态分布图形概率与数理统计基础标准正态分布
根据以上定理,可以将任何一个正态分布化为标准正态分布,即将其标准化。概率与数理统计基础标准正态分布图形概率与数理统计基础标准正态分布的分位数(临界值)
在实际问题中,
常取0.1、0.05、0.01.z0.05=1.645z0.01=2.326z0.01/2=2.575z0.05/2=1.96概率与数理统计基础4.2t分布定理1:若X~N(0,1),Y~
2(n),X与Y独立,则定理2:设(X1,X2,…,Xn)是正态总体N(μ,σ2)的简单随机样本,则概率与数理统计基础性质:
(1)f(x)关于x=0(纵轴)对称。
(2)f(x)的极限为N(0,1)的密度函数,即
当n较大时,t分布近似于标准正态分布.概率与数理统计基础概率与数理统计基础来定义.其中伽玛函数通过积分若随机变量X的概率密度为那么称X服从自由度为n的分布记作:4.3分布概率与数理统计基础
χ2分布的密度函数的图形如右图.应用中心极限定理可得,
,则当n充分大时若的分布近似正态分布N(0,1).则可以求得,
E(X)=n,Var(X)=2n若若X1,X2,……,Xn相互独立,且Xi~N(0,1),则性质1:性质2:概率与数理统计基础概率与数理统计基础则称X服从自由度为n1和n2的F分布。n1称第一自由度,n2称第二自由度。定义:若随机变量X的密度函数为4.4F分布概率与数理统计基础定理1
若X~
2(n1),Y~
2(n2),X,Y独立,则概率与数理统计基础**定理2:设(X1,X2,…,Xn1)是N(μ1,σ12)的样本,(Y1,Y2,…,Yn2)是N(μ2,σ22)的样本,且相互独立,S12,S22是样本方差,则概率与数理统计基础分位数问题:概率与数理统计基础概率与数理统计基础第五节通过样本,估计总体(一)
——估计量的特征5.1无偏性5.2有效性5.3一致性所谓估计量的特性指的是衡量一个统计量用以估计总体参数的好坏标准。概率与数理统计基础5.1无偏性估计量的观察或试验的结果,估计值可能较真实的参数值偏大或偏小,而一个好的估计量不应总是偏大或偏小,在多次试验中所得的估计量的平均值应与真实参数吻合,这就是无偏性所要求的。是一个随机变量,对一次具体定义是
的一个估计量,如果则称是
的一个无偏估计。如果不是无偏的,,就称该估计是有偏的。称为的偏差。概率与数理统计基础5.2有效性(最小方差性、最优性)总体某个参数的无偏估计量往往不只一个,而且无偏性仅仅表明的所有可能的取值按概率平均(均值)等于,它的可能取值可能大部分与相差很大。为保证的取值能集中于附近,必须要求的方差越小越好。所以,提出有效性标准。概率与数理统计基础有效性(最小方差性、最优性)定义对于参数
的无偏估计量,其取值应在真值附近波动,我们希望它与真值之间的偏差越小越好。定义设均为未知参数
的无偏估计量,若则称比有效。在
的所有无偏估计量中,若估计量,则称是具有最小方差的无偏显然也是最有效的无偏估计量,简称有效估计量。为最小方差无偏估计量。概率与数理统计基础无偏有效估计量的意义一个无偏有效估计量的取值在可能范围内最密集于真值附近。换言之,它以最大的概率保证估计量的取值在真值附近摆动。概率与数理统计基础第六节通过样本,估计总体(二)
——估计方法点估计——普通最小二乘法所谓点估计就是给出被估计参数的一个特定的估计值。区间估计——概率与数理统计基础区间估计的概念所谓区间估计就是以一定的可靠性给出被估计参数的一个可能的取值范围。具体做法是找出两个统计量与,使称为置信区间,称为置信系数(置信度),称为冒险率(测不准的概率),一般取5%或1%。概率与数理统计基础对区间估计的形象比喻我们经常说某甲的成绩“大概80分左右”,可以看成一个区间估计问题。(某甲的成绩为被估计的参数)下限上限大概80分左右置信系数(大概准确的程度)冒险率(显著性水平)P(75<80<85)=95%=1-5%概率与数理统计基础区间估计的步骤找一个含有该参数的统计量;构造一个概率为的事件;通过该事件的概率解出该参数的区间估计概率与数理统计基础关于区间估计的说明在进行区间估计时,应针对不同的情况,采用不同的方法。例如分清分布的形式是已知还是未知;是大样本还是小样本;小样本又得分清是已知方差还是未知方差。充分利用分布信息可以得到较精确的估计。一般地,越大置信度越低,反之则反。概率与数理统计基础第六节通过样本,估计总体(三)
——假设检验概率与数理统计基础1.假设检验的定义设总体X的分布函数F(x,)的形式已知,但是其中的参数未知。现在对参数提出假设:,然后利用样本值对这个假设作出检验,判断其真伪,这就是参数的假设检验。设总体X的分布函数形式未知,现在假设它的分布函数为某个指定函数,然后利用样本信息进行检验,判断其真伪,这就是非参数的假设检验。一般研究参数的假设检验问题。概率与数理统计基础2.原假设与备择假设原假设:是我们进行统计假设检验欲确定其是否成立的假设——体现进行假设检验的目的,而且往往是希望否定这个假设,一般用H0表示。备择假设:是原假设的对立面,统计假设检验是二择一的判断,当原假设不成立时,不得不接受它,一般用H1表示。概率与数理统计基础3.显著性水平
:显著性水平可以理解为事件显著不可能发生的水平;可以理解为原假设的数值与真实值显著差异大小的水平;是小概率事件;是指犯“第一类错误”(原假设)的可能性;一般取值很小,0.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025简单渣土运输车合同
- 中式糕转让店铺合同范例
- 会所投资合同范例
- 茶业授权经销合同范例
- 工业用房置换合同范例
- 材料签约合同范例
- 委托监控施工合同范例
- 国际货物运输合同范例
- 生产副总合同范例
- 涂料代工加盟合同范例
- 销售谈判技巧课件
- 一元二次方程根与系数的关系复习课课件
- 慰问品采购投标方案(完整技术标)
- 汽机专业小口径管道施工规范及工艺要求
- 2023-2023年江苏省苏州市高一上学期数学期末试卷和解析
- 院前急救诊疗技术操作规范
- 陈州的励志故事课件
- 中职一年级家长会-共30张课件
- 高中物理-带电粒子在匀强组合场中的运动教学设计学情分析教材分析课后反思
- 中国近代人物研究学习通课后章节答案期末考试题库2023年
- 注册安全工程师考试之安全技术分章习题通关宝典
评论
0/150
提交评论