版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑
色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在AABC中,NC=90o,NB=3(T,AD是小ABC的角平分线,DEJLAB,垂足为点E,DE=1,贝!jBC=()
A.73B.2C.3D.73+2
2.如图,已知二次函数y=ax?+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;
@a-b>-—;③5加(1=/恒;④不等式kxWax?+bx的解集是OSxWl.其中正确的是()
313
C.①④D.③④
3.若。O的半径为5cm,OA=4cm,则点A与。O的位置关系是()
A.点A在。O内B.点A在。O上C.点A在。O外D.内含
4.下列计算正确的是()
A.(a2)3=a6B.a2*a3=a6C.a3+a4=a7D.(ab)3=ab3
5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概
率是()
4321
A.—B.—C.—D.一
5555
6.平面直角坐标系中,若点A(a,-b)在第三象限内,则点B(b,a)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
7.在直角坐标系中,设一质点M自Po(1,0)处向上运动一个单位至Pi(1,1),然后向左运动2个单位至P2处,
再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至Ps处……,如此继续运动下去,
,贝!IX1+X2+..........+X2018+X2019的值为()
D.2019
8.已知抛物线y=x?+bx+c的对称轴为x=2,若关于x的一元二次方程-x?-bx-c=0在-1VXV3的范围内有两个相
等的实数根,则c的取值范围是()
A.c=4B.-5<c<4C.-5VcV3或c=4D.-5Vc03或c=4
9.从3、1、一2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是()
11.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE—ED-DC运动到点C停止,点Q从点B
出发沿BC运动到点C停止,它们运动的速度都是lcm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的
面积为y(cm?),已知y与t之间的函数图象如图2所示.给出下列结论:①当OVtWlO时,△BPQ是等腰三角形;
②SAABE=48cm2;③14<tV22时,y=110-It;④在运动过程中,使得AABP是等腰三角形的P点一共有3个;⑤当
ABPQ与ABEA相似时,t=14.1.其中正确结论的序号是()
12.如图,已知直线PQ±MN于点O,点A,B分别在MN,PQ上,OA=LOB=2,在直线MN或直线PQ上
找一点C,使白ABC是等腰三角形,则这样的C点有()
二」
MOAN
O
A.3个B.4个C.7个D.8个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在直角三角形ABC中,ZC=90°,已知sinA==,则cosB=.
DE3
14.如图,D、E分别为△ABC的边84、C4延长线上的点,且O£〃BC.如果——=-,CE=16,那么AE的长
BC5
为_______
x+3y=5
15.方程组的解是.
2x-3y=1
16.对于二次函数y=x2-4x+4,当自变量x满足aqS3时,函数值y的取值范围为0勺勺,则a的取值范围为一.
17.如图,量角器的0度刻度线为A3,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另
一边交量角器于点A,D,量得AD=10s,点。在量角器上的读数为60,则该直尺的宽度为an.
18.如图,在△ABC中,ZC=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移
动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=
时,ACPQ与ACBA相似.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点
P(0,t)的直线MP记作1.
(1)若1的解析式为y=2x+4,判断此时点A是否在直线I上,并说明理由;
(2)当直线1与AD边有公共点时,求t的取值范围.
20.(6分)如图,AB为。O的直径,C为。。上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长
线交于点E.
(1)求证:AC平分NDAB;
(2)若BE=3,CE=36,求图中阴影部分的面积.
21.(6分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、
B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30。和45。,试确定生命
22.(8分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的
是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件
合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到
合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
23.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是
根据抽查结果绘制的统计图的一部分.
组别正确数字X人数
A0<x<810
B8<x<1615
C16<x<2425
D24<x<32m
E32<x<40n
根据以上信息解决下列问题:
(1)在统计表中,m=,n=,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是.
(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:
每位学生至少获得两位评委老师的“通过,,才能代表学校参加鄂州市“汉字听写,,比赛,请用树形图求出E组学生王云参
24.(10分)如图,某大楼的顶部竖有一块广告牌小李在山坡的坡脚A处测得广告牌底部。的仰角为60。沿坡面
4B向上走到3处测得广告牌顶部C的仰角为45。,已知山坡45的倾斜角NBA”=30。,43=20米,48=30米.
(1)求点8距水平面AE的高度58;
(2)求广告牌C。的高度.
25.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费
1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购
买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对
两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如
果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
3%-1<5
26.(12分)〈
-2(x+D—Kx
27.(12分)已知反比例函数——的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)MCm,n)是反比例函数图象上的一动点,其中0VmV3,过点M作直线M3〃x轴,交y轴于点5;过点A
作直线AC〃y轴,交x轴于点C,交直线MB于点O.当四边形。4OM的面积为6时,请判断线段8M与0M的大
小关系,并说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、c
【解析】
试题分析:根据角平分线的性质可得CD=DE=L根据RtAADE可得AD=2DE=2,根据题意可得AADB为等腰三角
形,贝!IDE为AB的中垂线,贝!JBD=AD=2,贝!|BC=CD+BD=1+2=1.
考点:角平分线的性质和中垂线的性质.
2、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax?+bx得到a与b数量关系,代入②,不等式kxSax2+bx的解集
可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax?+bx,则2=9a+lb
b=-3a,
3
222
a-b=a-(----3a)=4a----->-—,故②正确;
333
22
由正弦定义sina=/,,=方==,则③正确;
V32+22V1313
不等式kx<ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x>l或x<0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sina公式,不等式的解集.
3、A
【解析】
直接利用点与圆的位置关系进而得出答案.
【详解】
解:丫。。的半径为5cm,OA=4cm,
.,.点A与。O的位置关系是:点A在。O内.
故选A.
【点睛】
此题主要考查了点与圆的位置关系,正确①点P在圆外ud>r,②点P在圆上Ud=r,③点P在圆内udVr是解题关键.
4、A
【解析】
分析:根据幕的乘方、同底数嘉的乘法、积的乘方公式即可得出答案.
详解:A、幕的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幕的乘法,底数不变,指数相加,原式=/,
故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式="〃,计算错误;故选A.
点睛:本题主要考查的是幕的乘方、同底数毒的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题
的关键.
5、B
【解析】
试题解析:列表如下:
男1男2男3女1女2
男1——VV
男2——VV
男3一—VV
女1VVV一
女2VVV—
.••共有20种等可能的结果,P(一男一女)=—=j.
故选B.
6、D
【解析】
分析:根据题意得出a和b的正负性,从而得出点B所在的象限.
详解:,•,点A在第三象限,.-.a<0,-b<0,即aVO,b>0,...点B在第四象限,故选D.
点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.
7、C
【解析】
根据各点横坐标数据得出规律,进而得出:+X2+…+x7;经过观察分析可得每4个数的和为2,把2019个数分为505
组,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:XI、X2、X3、X4、X5、X6、X7、X8的值分别为:1,-1,-1,3,3,-3,
-3,5;
X1+X2+...+X7=-1
VXi+X2+X3+X4=1-1~1+3=2;
X5+X6+X7+X8-3-3-3+5=2;
X97+X98+X99+Xioo=2...
・'xi+x2+.・・+x2oi6=2x(20164-4)=1.
而X2O17、X2OI8、X2019的值分别为:1009,-1009、-1009,
•••X2017+X201«+X2019=-1009,
=
/•Xl+X2+...+X2018+X20191-1009=-19
故选C.
【点睛】
此题主要考查规律型:点的坐标,解题关键在于找到其规律
8,D
【解析】
解:由对称轴x=2可知:b=-4,
二抛物线yr2-4x+c,
令x=-1时,y=c+5,
x=3时,y-c-3,
关于x的一元二次方程-/-床-c=0在-1VxV3的范围有实数根,
当A=0时,
即c=4,
此时x=2,满足题意.
当4>0时,
(c+5)(c-3)<0,
•«-5<c<3>
当c=-5时,
此时方程为:-x2+4x+5=0,
解得:*=-1或x=5不满足题意,
当c=3时,
此时方程为:-必+4%-3=0,
解得:x=l或x=3此时满足题意,
故-5<c<3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
9、B
【解析】
解:画树状图得:
开始
13-2
3-21-213
21
•••共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,;.尸点刚好落在第四象限的概率=:=:;.故
63
选B.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,
列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
10、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
11、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨
论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与ABEA相似的可能性,分类讨论计算即
可.
【详解】
解:由图象可知,点Q到达C时,点P至!|E贝!|BE=BC=10,ED=4
故①正确
贝!IAE=10-4=6
t=10时,△BPQ的面积等于-BC£)C=-xlODC=4O,
22
,AB=DC=8
啦”;2AE=24,
故②错误
当14VtV22时,y=1BCPC=^xl0x(22-x)=110-5/,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则。A、OB及AB垂直平分线与点P运行路径的交点是P,满足AABP是等腰三角形
此时,满足条件的点有4个,故④错误.
•••△BEA为直角三角形
;•只有点P在DC边上时,有^BPQ与4BEA相似
由已知,PQ=22-t
・••当IABT强PO或A第B=历BC时’ABPQ与ABEA相似
分别将数值代入
822-—810
片--或蓝五工,
132
解得1=笠(舍去)或t=14.l
14
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
12、D
【解析】
试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
解:使△ABC是等腰三角形,
当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
所以共8个.
故选D.
点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、>
J
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-a)=cosa,cos(90°-a)=sina.
试题解析:•・・在△ABC中,ZC=90°,
・・・NA+NB=90。,
:.cosB=sinA=::.
5
考点:互余两角三角函数的关系.
14、1
【解析】
DFFA3
根据DE〃BC,得到再代入AC=1LAE,则可求AE长.
BCAC5
【详解】
VDE/7BC,
.DE_EA
BC-AC'
..DE3
=CE=H,
,BC5
AE3
解得AE=L
16—AE
故答案为1.
【点睛】
本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
【解析】
利用加减消元法进行消元求解即可
【详解】
卜+3y=5①
:[2x-3y=l(2)
由①+②,得
3x=6
x=2
把x=2代入①,得
2+3y=5
y=i
x=2
所以原方程组的解为:,
1^=1
x=2
故答案为:\1
【点睛】
本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.
16、l<a<l
【解析】
根据y的取值范围可以求得相应的x的取值范围.
【详解】
解:二,二次函数y=x-4x+4=(x-1),,
b-4
该函数的顶点坐标为(1,0),对称轴为:x=--==2,
把y=o代入解析式可得:x=i,
把y=l代入解析式可得:*=3,&=1,
所以函数值y的取值范围为0q勺时,自变量x的范围为l<x<3,
故可得:IWaWL
故答案为:IWaWL
【点睛】
此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
17、—5/3
3
【解析】
连接与AO交于点E,根据圆周角定理有/氏4。=1/8。。=30°,根据垂径定理有:AE=1AO=5,解
22
直角△04E即可.
【详解】
连接OC,OD,OC与AD交于点E,
OE=A£tan30°=*G,
3
直尺的宽度:CE=OC-OE=06-H』,&
333
故答案为g6
【点睛】
考查垂径定理,熟记垂径定理是解题的关键.
-64
18、4.8或一
11
【解析】
根据题意可分两种情况,①当CP和C8是对应边时,ACPQs^c氏4与②CP和C4是对应边时,ACPQs^CAB,
根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和C5是对应边时,△CPQS/\C5A,
CP_CQ
所以
~CB~^A
16-2r_t
即
~~1612
解得1=4.8;
②CP和CA是对应边时,ACPQ^^CAB,
所以。=詈,
CACB
16-2/t
即
12?6
解得t=—.
64
综上所述,当f=4.8或1时,ACP。与ACA4相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
4
19、(1)点A在直线I上,理由见解析;(2)§St".
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-l代入解析式y=2x+4得出y的值,即可得出点A在直线1上;
(2)当直线1经过点D时,设1的解析式代入数值解出即可
【详解】
(1)此时点A在直线1上.
VBC=AB=2,点O为BC中点,
.,.点B(T,0),A(—1,2).
把点A的横坐标x=-l代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
,此时点A在直线1上.
(2)由题意可得,点D(l,2),及点M(-2,0),
当直线1经过点D时,设1的解析式为y=kx+t(k#0),
2
9
—2k+t=O,解得《
k+t=2,4
T
由(1)知,当直线1经过点A时,t=4.
,当直线1与AD边有公共点时,t的取值范围是全t".
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
20、(1)证明见解析;(2)2叵一包
22
【解析】
(1)连接OC,如图,利用切线的性质得COJ_CD,则AD〃CO,所以NDAC=NACO,加上NACO=NCAO,从而
得至UNDAC=NCAO;
(2)设。O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出NCOE=60。,
然后根据扇形的面积公式,利用SWR=SACOE-S用彩COB进行计算即可.
【详解】
解:(1)连接OC,如图,
TCD与。。相切于点E,
ACOXCD,
VAD±CD,
,AD〃CO,
:.ZDAC=ZACO,
VOA=OC,
.".ZACO=ZCAO,
.,.ZDAC=ZCAO,
即AC平分NDAB;
(2)设OO半径为r,
在RtAOEC中,VOE2+EC2=OC2,
Ar2+27=(r+3)2,解得r=3,
AOC=3,OE=6,
AcosZCOE=-----=—,
OE2
AZCOE=60°,
.0«。1,/r60k-32983
••3阴影='ACOE-»a®COB=-•73----------=-------------7t•
236022
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出
垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
21、5.5米
【解析】
过点C作CD_LAB于点D,设CD=x,在RtAACD中表示出AD,在RtABCD中表示出BD,再由AB=4米,即可
得出关于x的方程,解出即可.
【详解】
设CD=x,
在RtAACD中,ZCAD=30°,贝!]AD=GCD=6x.
在RtABCD中,ZCBD=45°,贝!JBD=CD=x.
由题意得,#,x-x=4,
解得:x=.।=2(6+1
答:生命所在点C的深度为5.5米.
22、(1)-;(2)-;(3)x=l.
42
【解析】
(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
【详解】
解:(1)..工件同型号的产品中,有1件不合格品,
AP(不合格品)
不合格合格合格合格
合格台格含格不合格合格合格不台格含格合格不含格合格合格
共有12种情况,抽到的都是合格品的情况有6种,
p(抽到的都是合格品)=9=1;
122
(3)•••大量重复试验后发现,抽到合格品的频率稳定在0.95,
...抽到合格品的概率等于0.95,
解得:x=l.
【点睛】
本题考查利用频率估计概率;概率公式;列表法与树状图法.
7
23、(1)m=30,n=20,图详见解析;(2)90°;(3)一.
27
【解析】
分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数
的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.
详解:(1)七总人数为15+15%=100(人),
二D组人数m=100x30%=30,E组人数n=100x20%=20,
补全条形图如下:
(2)扇形统计图中“C组”所对应的圆心角的度数是360。、票=90。,
100
(3)记通过为A、淘汰为B、待定为C,
画树状图如下:
BC
ABCABCABC
ABCABCABCABCABCABCABCABCABC
由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,
...E组学生王云参加鄂州市“汉字听写,,比赛的概率为7一.
27
点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定
要明白样本容量=频数+频率,根据这个公式即可进行求解.
24、(1)5"为10米;(2)宣传牌。高约(40-206)米
【解析】
(1)过B作DE的垂线,设垂足为G.分别在RtAABH中,通过解直角三角形求出BH、AH;
(2)在AADE解直角三角形求出DE的长,进而可求出EH即BG的长,在RtACBG中,NCBG=45。,则CG=BG,
由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
【详解】
(1)过B作于//,
RtAAB”中,NBAH=30°,
ABH=-AB=-x20=10(米),
22
即点B距水平面AE的高度BH为10米;
(2)过8作8G_LOE于G,
':BH±HE,GELHE,BGLDE,」
二四边形3"EG是矩形.
\•由(1)得:8/7=10,A"=10百,
:.BG=AH+AE=(1073+30)米,
RtABGC中,NCBG=45。,
:.CG=BG=(1073+30)米,
:.CE=CG+GE=CG+BH=TQ6+30+10=106+40(米),
在RtAAED中,
=tanZDAE=tan60°=6,
A.E
£>E=GAE=30百
:.CD=CE-DE=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年杂志期刊项目规划申请报告模板
- 2024-2025学年延安市黄龙县三年级数学第一学期期末达标测试试题含解析
- 2024-2025学年忻州市岢岚县数学三年级第一学期期末联考试题含解析
- 2024-2025学年霞浦县数学三年级第一学期期末调研试题含解析
- 2025年果蔬设备项目规划申请报告
- 2024年版加工承揽保密条款3篇
- 2022年幼儿园中班安全教案7篇
- 学习委员工作总结(合集15篇)
- 2024年化工设备上门检修与安全评估协议3篇
- 银行员工辞职报告(13篇)
- 小学英语单词大全(含中文翻译)
- 经颅多普勒超声(TCD)
- 激励约束考核实施细则
- 高压蒸汽灭菌效果监测记录簿表(完整版)
- 作文考试专用稿纸 (A3完美打印版)
- 硝酸及液体硝酸铵生产行业风险分级管控体系实施指南
- 电厂一次调频试验方案
- 装修公司验收单
- 染色体标本的制作及组型观察
- 2003年高考全国卷.理科数学试题及答案
- 我国互联网企业价值评估的研究——以阿里巴巴网络公司为例
评论
0/150
提交评论