下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次根式【知识回顾】1.二次根式:式子(≥0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。3.同类二次根式:(>0)(>0)(<0)0(=0);4.二次根式的性质:(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1),其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1);(2)例3、在根式1),最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)例4、已知:例5、已知数a,b,若=b-a,则(
)A.a>b
B.a<b
C.a≥b
D.a≤b2、二次根式的化简与计算例1.将根号外的a移到根号内,得(
)A.;
B.-;
C.-;
D.例2.把(a-b)eq\r(-\f(1,a-b))化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数、在数轴上的位置,化简:比较数值例1、(1)比较与的大小。(2)比较与的大小。(3)比较与的大小。(4)比较与的大小。5、规律性问题例1.观察下列各式及其验证过程:
,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.例2.已知,则a_________发展:已知,则a______。例4、已知a>b>0,a+b=6,则的值为()A.B.2C.D.例5、甲、乙两个同学化简时,分别作了如下变形:甲:==;
乙:=。其中,(
)。A.甲、乙都正确
B.甲、乙都不正确C.只有甲正确
D.只有乙正确1.化简:(1)____;(2)_____(3)____;(4)___;(5)。(6)=(7)(8)=(9)5-2=______;(10)+(5-)=_________;(11);(12)=________;(13).(14)的倒数是。2.已知等边三角形ABC的边长为,则ΔABC的周长是____________;3.比较大小:3。4.使有意义的的取值范围是.5.函数中,的取值范围是.()6.下列二次根式中,的取值范围是≥2的是A、EQ\R(,2-x)B、EQ\R(,x+2)C、EQ\R(,x-2)D、EQ\R(,EQ\F(1,x-2))()7.下列根式中属最简二次根式的是A.B.C.D.()8.下列根式中不是最简二次根式的是A. B.C.D.()9.下列各式中与是同类二次根式的是A.2B. C. D.()10.下列各组二次根式中是同类二次根式的是A.B.C.D.()11.已知二次根式与是同类二次根式,则的α值可以是A、5B、6C、7D、8()12.若,则xy的值为A.B.C.D.13.若,则.14.如图,在数轴上表示实数的点可能是A.点B.点 C.点 D.点15.计算:(1)(2).(4).(5)16.先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45180-2024健身器材适老化通用要求
- 2024年砖厂供应合作合同样本版B版
- 广东省珠海市语文中考模拟试卷六套【附参考答案】
- 专项项目转让居间服务协议2024版B版
- 2024游艇俱乐部会员权益购买合同63篇
- 专利技术独家转让合同 2024年版版B版
- 6 摸一摸 说课稿-2024-2025学年科学一年级上册青岛版
- 2024流行休闲副食零售购销协议样本一
- 2024版石材产品购销协议样本版B版
- 2 学会宽容 第一课时 说课稿-2023-2024学年道德与法治六年级下册统编版
- 家族族谱资料收集表
- 2024年1月自考18960礼仪学试题及答案含解析
- Vue.js前端开发实战(第2版)-教学课件 第1章 初识Vue
- 事业单位年度考核实施方案
- 2024-2029年中国中药煎药机行业市场现状分析及竞争格局与投资发展研究报告
- 腰椎间盘突出疑难病例讨论
- 2023-2024学年度人教版四年级语文上册寒假作业
- 竣工验收消防查验和消防验收
- 卫生院岗位风险分级和监管制度工作方案
- 2016-2023年大庆医学高等专科学校高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 陕西麟游风电吊装方案专家论证版
评论
0/150
提交评论