版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省大连瓦房店市第六高级中学数学高二下期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C.48 D.2.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A. B. C. D.3.已知随机变量,若,则分别是()A.6和5.6 B.4和2.4 C.6和2.4 D.4和5.64.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.5.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是()A. B.C. D.6.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是()A. B. C. D.7.设,则()A. B. C. D.8.已知函数与的图象上存在关于轴对称的点,则的取值范围是()A. B. C. D.9.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A.2B.1C.0D.不能确定10.展开式中的常数项为A.B.C.D.11.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.6012.双曲线和有()A.相同焦点 B.相同渐近线 C.相同顶点 D.相等的离心率二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,且.(1)求,,的值;(2)猜想数列的通项公式的表达式,并用数学归纳法证明你的猜想.14.3名男生和3名女生站成一排照相,若男生甲不站在两端,3名女生中,有且只有两个女生相邻,则不同排法的种数为___________.15.设、两队进行某类知识竞赛,竞赛为四局,每局比赛没有平局,前三局胜者均得1分,第四局胜的一队得2分,各局负者都得0分,假设每局比赛队获胜的概率均为,且各局比赛相互独立,则比赛结束时队得分比队高3分的概率为__________.16.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求证:18.(12分)已知函数f(x)=x2(x-a),x∈R(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设f'(x)是f(x)的导函数,函数g(x)=f'(x),f(x)≥19.(12分)已知函数,为实数.(1)当时,求函数在点处的切线方程;(2)当,且恒成立时,求的最大值.20.(12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份
2007
2008
2009
2010
2011
2012
2013
年份代号t
1
2
3
4
5
6
7
人均纯收入y
2.9
3.3
3.6
4.4
4.8
5.2
5.9
(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:,21.(12分)在极坐标系中,极点为0,已知曲线与曲线交于不同的两点.求:(1)的值;(2)过点且与直线平行的直线的极坐标方程.22.(10分)电视传媒公司为了解世界杯期间某地区电视观众对《战斗吧足球》节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该节目时间的频率分布直方图:(注:频率分布直方图中纵轴表示,例如,收看时间在分钟的频率是)将日均收看该足球节目时间不低于40分钟的观众称为“足球迷”.(1)根据已知条件完成下面的列联表,并据此资料判断是否可以认为“足球迷”与性别有关?如果有关,有多大把握?非足球迷足球迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“足球迷”人数为.若每次抽取的结果是相互独立的,求的分布列、均值和方差.附:,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由三视图可得几何体是如图所示四棱锥,根据三视图数据计算表面积即可.【题目详解】由三视图可得几何体是如图所示四棱锥,则该几何体的表面积为:.故选:B【题目点拨】本题主要考查了三视图,空间几何体的表面积计算,考查了学生的直观想象能力.2、B【解题分析】
记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率.【题目详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【题目点拨】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.3、B【解题分析】分析:根据变量ξ~B(10,0.4)可以根据公式做出这组变量的均值与方差,随机变量η=8﹣ξ,知道变量η也符合二项分布,故可得结论.详解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵η=8﹣ξ,∴Eη=E(8﹣ξ)=4,Dη=D(8﹣ξ)=2.4故选:B.点睛:本题考查变量的均值与方差,均值反映数据的平均水平,而方差反映数据的波动大小,属于基础题.方差能够说明数据的离散程度,期望说明数据的平均值,从选手发挥稳定的角度来说,应该选择方差小的.4、D【解题分析】
求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【题目详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【题目点拨】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.5、C【解题分析】
求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【题目详解】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.【题目点拨】本题考查了椭圆与圆的综合,圆外任意一点到圆的最大距离是这个点到圆心的距离与圆的半径之和,根据圆外点在椭圆上,即可列出椭圆上一点到圆心的距离的解析式,结合函数最值,即可求得椭圆上一点到圆上一点的最大值.6、D【解题分析】
利用捆绑法:先从4名男歌手中选一名放在两名女歌手之间,并把他们捆绑在一起看作一个元素和剩余的3名男歌手进行全排列,利用排列组合的知识和分步计数原理求解即可.【题目详解】根据题意,分两步进行:先从4名男歌手中选一名放在两名女歌手之间,同时对两名女歌手进行全排列有种选择;再把他们捆绑在一起看作一个元素和剩余的3名男歌手进行全排列有种选择,由分步计数原理可得,共有出场方案的种数为.故选:D【题目点拨】本题考查利用捆绑法和分步乘法计数原理,结合排列数公式求解排列组合问题;考查运算求解能力和逻辑推理能力;分清排列和组合和两个计数原理是求解本题的关键;属于中档题、常考题型.7、A【解题分析】
根据复数除法运算得到,根据复数模长定义可求得结果.【题目详解】,.故选:.【题目点拨】本题考查复数模长的求解,涉及到复数的除法运算,属于基础题.8、C【解题分析】
函数关于轴对称的解析式为,则它与在有交点,在同一坐标系中分别画出两个函数的图象,观察图象得到.【题目详解】函数关于轴对称的解析式为,函数,两个函数的图象如图所示:若过点时,得,但此时两函数图象的交点在轴上,所以要保证在轴的正半轴,两函数图象有交点,则的图象向右平移均存在交点,所以,故选C.【题目点拨】本题综合考查函数的性质及图象的平移问题,注意利用数形结合思想进行问题求解,能减少运算量.9、A【解题分析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.10、B【解题分析】解:因为则可知展开式中常数项为,选B11、B【解题分析】
用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.12、A【解题分析】
对于已知的两条双曲线,有,则半焦距相等,且焦点都在轴上,由此可得出结论.【题目详解】解:对于已知的两条双曲线,有,半焦距相等,且焦点都在轴上,它们具有相同焦点.故选:A.【题目点拨】本题考查双曲线的定义与性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(1),,(2)().证明见解析【解题分析】
(1)利用递推式直接求:(2)猜想数列{an}的通项公式为()用数学归纳法证明即可.【题目详解】解:(1)∵,且,∴,,.(2)猜想数列的通项公式为().用数学归纳法证明如下:①当时,左边,右边,因此,左边=右边.所以,当时,猜想成立.②假设(,)时,猜想成立,即,那么时,.所以,当时,猜想成立.根据①和②,可知猜想成立.【题目点拨】本题考查了数列中的归纳法思想及证明基本步骤,属于基础题.14、【解题分析】
先计算有且只有两个女生相邻的排列种数,再计算“在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列”种数,即可得出结果.【题目详解】先考虑3名女生中,有且只有两个女生相邻的排列,共有种,在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列有种,所以,满足题意的不同排法的种数为:种.故答案为:.【题目点拨】本题主要考查计数原理的应用,属于常考题型.15、【解题分析】
比赛结束时队得分比队高3分是指前3局比赛中两胜一负,第4局比赛胜,由此能求出比赛结束时队得分比队高3分的概率.【题目详解】比赛结束时队得分比队高3分是指前3局比赛中两胜一负,第4局比赛胜,比赛结束时队得分比队高3分的概率:.故答案为:.【题目点拨】本题考查概率的求法,考查次独立重复试验中事件恰好发生次的概率计算公式等基础知识,考查运算求解能力,属于基础题.16、【解题分析】
总体含100个个体,从中抽取容量为5的样本,则每个个体被抽到的概率为.【题目详解】因为总体含100个个体,所以从中抽取容量为5的样本,则每个个体被抽到的概率为.【题目点拨】本题考查简单随机抽样的概念,即若总体有个个体,从中抽取个个体做为样本,则每个个体被抽到的概率均为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析.【解题分析】试题分析:此题证明可用分析法,寻找结论成立的条件,由于不等式两边均为正,因此只要证,化简后再一次平方可寻找到没有根号,易知显然成立的式子,从而得证.试题解析:证明:因为都是正数,所以为了证明只需证明展开得即因为成立,所以成立即证明了【题目点拨】(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.18、(Ⅰ)y=x-1(Ⅱ)g【解题分析】
(Ⅰ)求函数的导数,当a=1时,利用点斜式可求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)分别讨论a,利用数形结合法,求函数g(x)=f【题目详解】(Ⅰ)当a=1时,f(x)=x2(x-1),∴f'(1)=1,又∴曲线(1,f(1))在点(1,f(1))处的切线方程为:y=x-1.(Ⅱ)f(x)=x3-a由f(x)=fx1=a+3-a2-2a+9得当-2≤a≤2,x2a=0时,g(x)=x3,g(x)在-2,2单调递增,∴g②当-2≤a<0时,可得-2≤a<x1<∴g(x)在-2,x1单调递增,x1g(x)min③当0<a≤2时,可得0<a∵f(x)∴g(x)=f(x),x∈[-2,0]∴g(x)在-2,0单调递增,0,a3单调递减,a3,x∴g(x)综上,g(x)【题目点拨】本题考查了导数的综合应用问题,函数曲线的切线,函数的最值,属于难题.19、(1)(2)【解题分析】分析:(1)当时,,利用导函数研究切线方程可得函数在点处的切线方程为.(2)原问题等价于恒成立,二次求导,由导函数研究的性质可知,满足,,,,则.据此讨论可得的最大值为.详解:(1)当时,,∴,所以函数在点处的切线方程为,即为.(2)恒成立,则恒成立,又,令,所以,所以在为单调递增函数.又因为,,所以使得,即,,,,所以.又因为,所以,所以,,令,,,所以,即,又,所以,因为,,所以的最大值为.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.20、(1);(1)在1557至1512年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加千元;元.【解题分析】试题分析:本题主要考查线性回归方程、平均数等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用平均数的计算公式,由所给数据计算和,代入公式中求出和,从而得到线性回归方程;第二问,利用第一问的结论,将代入即可求出所求的收入.试题解析:(1)由所给数据计算得=(1+1+2+3+4+6+7)=3,=(1.9+2.2+2.6+3.3+3.8+4.1+4.9)=3.2,,,所求回归方程为.(1)由(1)知,,故1559年至1514年该地区农村居民家庭人均纯收入逐年增加,平均每年增加5.4千元.将1517年的年份代号t=9,代入(1)中的回归方程,得,故预测该地区1517年农村居民家庭人均纯收入为6.8千元.考点:线性回归方程、平均数.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络社交平台合作协议
- 农业机械化管理手册提高生产效率
- 串行接口板安全操作规程
- 中惠普氢空一体机安全操作规程
- 2024油购销合同范本
- 二零二五年度带社区配套还原房买卖合作框架协议3篇
- 二零二五年二手房交易水电煤交接合同3篇
- 二零二五年度医疗企业整体资产转让合同范文书3篇
- 三相多功能便携式装置安全操作规程
- 安徒生童话的深度解读
- 期末检测卷(一)(试卷)-2024-2025学年外研版(三起)英语六年级上册(含答案含听力原文无音频)
- 《防范于心反诈于行》中小学防范电信网络诈骗知识宣传课件
- 2023-2024学年北京市通州区九年级(上)期末语文试卷
- 2023-2024学年广东省深圳市龙岗区八年级(上)期末英语试卷
- DB23-T 3768-2024北方种鹅节水生态旱养管理技术规程
- 勘察工作质量及保证措施
- 事业单位招聘《综合基础知识》考试试题及答案
- 2024年电工(高级技师)考前必刷必练题库500题(含真题、必会题)
- 垫江县中医院2018年11月份临床技能中心教学设备招标项目招标文件
- 2024年《浙江省政治学考必背内容》(修订版)
- 2024-2025学年初中数学七年级下册沪教版(五四学制)(2024)教学设计合集
评论
0/150
提交评论