版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省安阳市安阳县一中高二数学第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线斜率为()A. B. C. D.2.执行如图所示的程序框图,若输出的S的值为3,则判断框中填入的条件可以是()A. B. C. D.3.变量满足约束条件,若的最大值为2,则实数等于()A.—2 B.—1 C.1 D.24.一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种 B.15种 C.17种 D.19种5.某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则()A.r1=r2 B.r1<r2 C.r1>r2 D.无法判定7.已知i是虚数单位,则复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知双曲线:的左、右焦点分别为,,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,且满足,则的离心率满足()A. B. C. D.9.已知函数在区间内没有极值点,则的取值范围为A. B. C. D.10.观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是()A. B.C. D.11.在的展开式中,项的系数为().A. B. C. D.12.设函数,则“”是“有4个不同的实数根”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知某圆柱是将边长为2的正方形(及其内部)绕其一条边所在的直线旋转一周形成的,则该圆柱的体积为_______.14.已知函数在时有极值,则_______.15.若函数的单调递增区间是,则的值是__________.16.在中,是边上的中线,,若,则_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.(1)求异面直线EG与BD所成角的大小;(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为?若存在,求出线段CQ的长;若不存在,请说明理由.18.(12分)用数学归纳法证明.19.(12分)已知函数,.(1)若在区间上单调,求的取值范围;(2)设,求证:时,.20.(12分)选修4-5:不等式选讲设函数.(1)若,求函数的值域;(2)若,求不等式的解集.21.(12分)已知四棱锥的底面为等腰梯形,,垂足为是四棱锥的高,为中点,设(1)证明:;(2)若,求直线与平面所成角的正弦值.22.(10分)已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.(1)讨论函数f(x)的单调性并求极值;(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.
故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.2、B【解题分析】
模拟程序运行,观察变量值的变化,判断循环条件.【题目详解】程序运行中,变量值变化如下:,判断循环条件,满足,,判断循环条件,满足,……,,判断循环条件,满足,,,判断循环条件,这里应不满足,输出.故条件为.判断框中填入,故选:B.【题目点拨】本题考查程序框图,解题时可模拟程序运行,根据输出结论确定循环条件.3、C【解题分析】
将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C.考点:线性规划.4、D【解题分析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.5、B【解题分析】
由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积.【题目详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为.故选B.【题目点拨】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.6、C【解题分析】
利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【题目详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,∴相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,∴相关系数为,满足,即,故选C.【题目点拨】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).7、A【解题分析】
先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【题目详解】解:∵,∴,∴复数z的共轭复数在复平面内对应的点的坐标为(),所在的象限为第一象限.故选:A.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为8、D【解题分析】分析:联立圆与渐近线方程,求得M的坐标,由,得点在双曲线右支上,代入双曲线方程化简即可求.详解:由,得,即,由,,即由,化简得,即,故选D.点睛:本题考查双曲线的简单几何性质,点到直线的距离公式,考查计算能力,属于中档题.9、D【解题分析】
利用三角恒等变换化简函数的解析式,再根据正弦函数的极值点,可得2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z,由此求得ω的取值范围.【题目详解】∵函数=sin2ωx﹣2•1=sin2ωxcos2ωx+1=2sin(2ωx)+1在区间(π,2π)内没有极值点,∴2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z.解得kω,或kω,令k=0,可得ω∈故选D.【题目点拨】本题主要考查三角恒等变换,正弦函数的极值点,属于中档题.10、D【解题分析】
在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,即可得出结论.【题目详解】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中x1,x2所占比例相差越大,则分类变量x,y关系越强,故选D.【题目点拨】本题考查独立性检验内容,使用频率等高条形图,可以粗略的判断两个分类变量是否有关系,是基础题11、A【解题分析】二项式展开式的通项为。所以展开式中项的系数为.选.12、B【解题分析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,,,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,,,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据题意得到圆柱底面圆半径为,高为,根据圆柱的体积公式,即可得出结果.【题目详解】因为圆柱是将边长为2的正方形(及其内部)绕其一条边所在的直线旋转一周形成的,则圆柱底面圆半径为,高为,所以该圆柱的体积是.故答案为:【题目点拨】本题主要考查旋转体的体积,熟记圆柱体积公式即可,属于基础题型.14、【解题分析】
函数在时有极值,由,代入解出再检验即可。【题目详解】由题意知又在时有极值,所以或当时,与题意在时有极值矛盾,舍去故,故填【题目点拨】本题考查根据函数的极值点求参数,属于中档题,需要注意的是求解的结果一定要检验其是否满足题意。15、1【解题分析】分析:求导函数,分类讨论,利用导数的正负,即可求的单调区间;详解:若,则,即在上单调递增,不符题意,舍;
若,令,可得或(舍去)x(0,2−aa2−aa(2−aaf′(x)-0+f(x)减增),+∞)∴在上是减函数,在上是增函数;根据题意若函数的单调递增区间是,则即答案为1.点睛:本题考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,正确转化是关键.16、【解题分析】
先设,根据余弦定理得到,,进而可判断出结果.【题目详解】设,则,在中,所以,,在中,,所以,,而,所以,三角形为等边三角形,所以,.【题目点拨】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)线段CQ的长度为.【解题分析】
(1)以点A为坐标原点,射线AB,AD,AZ分别为x轴、y轴、z轴的正半轴建系如图示,写出点E(0,0,1)、G(1,2,0)、B(2,0,0)、D(0,2,0),和向量,的坐标,利用异面直线EG与BD所成角公式求出异面直线EG与BD所成角大小即可;(2)对于存在性问题,可先假设存在,即先假设在线段CD上存在一点Q满足条件,设点Q(x0,2,0),平面EFQ的法向量为,再点A到平面EFQ的距离,求出x0,若出现矛盾,则说明假设不成立,即不存在;否则存在.【题目详解】解:(1)以点A为坐标原点,射线AB,AD,AZ分别为x轴、y轴、z轴的正半轴建立空间直角坐标系如图示,点E(0,0,1)、G(1,2,0)、B(2,0,0)、D(0,2,0),则,.设异面直线EG与BD所成角为θ,所以异面直线EG与BD所成角大小为.(2)假设在线段CD上存在一点Q满足条件,设点Q(x0,2,0),平面EFQ的法向量为,则有得到y=0,z=xx0,取x=1,所以,则,又x0>0,解得,所以点即,则.所以在线段CD上存在一点Q满足条件,且线段CQ的长度为.【题目点拨】:考查空间向量的应用,向量的夹角公式,解本题关键在于对空间向量和线线角的结合原理要熟悉.属于基础题.18、见解析.【解题分析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证时不等式成立;(2)假设当时成立,利用放缩法证明时,不等式也成立.详解:证明:①当时,左边,不等式成立.②假设当时,不等式成立,即,则当时,,∵,∴,∴当时,不等式成立.由①②知对于任意正整数,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.19、(1)或(2)见解析【解题分析】
(1)在区间上单调且是增函数,所以或,进而得到答案.(2)令,,由的导函数研究的单调性并求出最小值,则可知在时是增函数,从而证得答案.【题目详解】解:(1)∵是增函数.又∵在区间上单调,∴或.∴或(2)令.∵,.∴时,是减函数,时,是增函数,∴时,.∵,∴.∴在时是增函数.∴,即.【题目点拨】本题考查函数的单调性以及利用导函数证明不等式问题,解题的关键是令,属于偏难题目.20、(1).(2).【解题分析】分析:(1)当时,,根据绝对值不等式的几何意义即可求出函数的值域;(2)当时,不等式即,对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果.详解:(1)当时,∵∴,函数的值域为(2)当时,不等式即①当时,得,解得,∴②当时,得。解得,∴③当时,得,解得,所以无解综上所述,原不等式的解集为点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.21、(1)证明见解析;(2).【解题分析】分析:(1)以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法证明·=0即得PE⊥BC.(2)利用线面角的向量公式求直线与平面所成角的正弦值.详解:以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0).(1)证明:设C(m,0,0),P(0,0,n)(m<0,n>0),则D(0,m,0),E(,,0).可得=(,,-n),=(m,-1,0).因为·=-+0=0,所以PE⊥BC.(2)由已知条件可得m=-,n=1,故C(-,0,0),D(0,-,0),E(,-,0),P(0,0,1).设n=(x,y,z)为平面PEH的法向量,则,即,因此可以取n=(1,,0).由=(1,0,-1),可得|cos〈,n〉|=,所以直线PA与平面PEH所成角的正弦值为.点睛:(1)本题主要考查空间直线平面位置关系的证明,考查直线平面所成角的计算,意在考查学生对这些知识的掌握水平和空间想象能力转化能力.(2)直线和平面所成的角的求法方法一:(几何法)找作(定义法)证(定义)指求(解三角形),其关键是找到直线在平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法),其中是直线的方向向量,是平面的法向量,是直线和平面所成的角.22、(1)见解析;(2)【解题分析】
(1)函数f(x)的定义域为(1,+∞).求出函数的导函数,然后对a分类讨论可得原函数的单调性并求得极值;(2)对g(x)求导函数,对a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园走廊节日课程设计
- 政治核心教案的课程设计
- 智能家居物联网设备接入与管理方案
- 经典儿歌的童年回忆读后感
- 红色故事传承读后感
- 市场竞争分析与策略考核试卷
- 互联网教育服务协议
- 幼儿园艺术教育的未来发展
- 旋转灌装机课程设计绪论
- 个人品牌建设与管理策略
- 2024-2025学年高二上学期期末数学试卷(提高篇)(含答案)
- 2025年安全生产目标实施计划
- 福建百校2025届高三12月联考历史试卷(含答案解析)
- 2024年山西省建筑安全员《B证》考试题库及答案
- 2023年益阳市安化县招聘乡镇卫生院护理人员笔试真题
- 《基于PLC的智能交通灯控制系统设计》10000字(论文)
- 首都经济贸易大学《微积分》2021-2022学年第一学期期末试卷
- 人音版音乐七年级上册《父亲的草原母亲的河》课件
- 2024年度短视频内容创作服务合同3篇
- 介入治疗并发症
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
评论
0/150
提交评论