2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南平顶山市高二数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,由图得到结论不正确的为()A.性别与是否喜欢理科有关B.女生中喜欢理科的比为C.男生不喜欢理科的比为D.男生比女生喜欢理科的可能性大些2.若复数z满足,则在复平面内,z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若命题“使”是假命题,则实数的取值范围为()A. B.C. D.4.下列说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“,”的否定是“,”C.样本的相关系数r,越接近于1,线性相关程度越小D.命题“若,则”的逆否命题为真命题5.若抛物线,过其焦点的直线与抛物线交于两点,则的最小值为()A.6 B. C.9 D.6.若为虚数单位,复数与的虚部相等,则实数的值是A. B.2 C.1 D.7.双曲线的渐近线方程为,则其离心率为()A. B. C. D.8.若点P在抛物线上,点Q(0,3),则|PQ|的最小值是()A. B. C. D.9.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.10.已知函数,若是图象的一条对称轴的方程,则下列说法正确的是()A.图象的一个对称中心 B.在上是减函数C.的图象过点 D.的最大值是11.设函数,则满足的的取值范围是()A. B.C. D.12.方程的实根所在的区间为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线,过的焦点的直线与交于,两点。弦长为,则线段的中垂线与轴交点的横坐标为__________.14.若,,则实数的取值范围为__________.15.在中,,,,点在线段上,若,则________.16.已知函数,使在上取得最大值3,最小值-29,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车,并对该电动汽车的电池使用情况进行了测试,其中剩余电量与行驶时间(单位:小时)的测试数据如下:如果剩余电量不足,则电池就需要充电.(1)从组数据中选出组作回归分析,设表示需要充电的数据组数,求的分布列及数学期望;(2)根据电池放电的特点,剩余电量与时间工满足经验关系式:,通过散点图可以发现与之间具有相关性.设,利用表格中的前组数据求相关系数,并判断是否有的把握认为与之间具有线性相关关系.(当相关系数满足时,则认为的把握认为两个变量具有线性相关关系);(3)利用与的相关性及前组数据求出与工的回归方程.(结果保留两位小数)附录:相关数据:,,,.前9组数据的一些相关量:合计相关公式:对于样本.其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.18.(12分)已知函数.(1)解不等式;(2)设,若对任意,存在,使得成立,求的取值范围.19.(12分)已知抛物线与椭圆有共同的焦点,过点的直线与抛物线交于两点.(Ⅰ)求抛物线的方程;(Ⅱ)若,求直线的方程.20.(12分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:表1每分钟跳绳个数得分17181920(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大于等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?表2跳绳个数合计男生28女生54合计100附:参考公式:临界值表:0.0500.0100.0013.8416.63510.828(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数服从正态分布(用样本数据的平均值和方差估计总体的期望和方差,各组数据用中点值代替).①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为,求的分布列及期望.附:若随机变量服从正态分布,则,,..21.(12分)已知椭圆的离心率为,是椭圆上一点.(1)求椭圆的标准方程;(2)过椭圆右焦点的直线与椭圆交于两点,是直线上任意一点.证明:直线的斜率成等差数列.22.(10分)已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,交椭圆于两个不同点.(1)求椭圆的标准方程以及的取值范围;(2)求证直线与轴始终围成一个等腰三角形.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

本题为对等高条形图,题目较简单,逐一排除选项,注意阴影部分位于上半部分即可.【题目详解】解:由图可知,女生喜欢理科的占,故B正确;男生喜欢理科的占,所以男生不軎欢理科的比为,故C不正确;同时男生比女生喜欢理科的可能性大些,故D正确;由此得到性别与喜欢理科有关,故A正确.故选:.【题目点拨】本题考查等高条形图等基础知识,考查数据处理能力、运算求解能力,考查数形结合思想,是基础题.2、D【解题分析】

由复数的基本运算将其化为形式,z对应的点为【题目详解】由题可知,所以z对应的点为,位于第四象限.故选D.【题目点拨】本题考查复数的运算以及复数的几何意义,属于简单题.3、B【解题分析】

若原命题为假,则否命题为真,根据否命题求的范围.【题目详解】由题得,原命题的否命题是“,使”,即,解得.选B.【题目点拨】本题考查原命题和否命题的真假关系,属于基础题.4、D【解题分析】

利用四种命题之间的变换可判断A;根据全称命题的否定变法可判断B;利用相关系数与相关性的关系可判断C;利用原命题与逆否命题真假关系可判断D.【题目详解】对于A,命题“若,则”的否命题为“若,则”,故A错误;对于B,命题“,”的否定是“,”,故B错误;对于C,样本的相关系数r,越接近于1,线性相关程度越大,故C错误;对于D,命题“若,则”为真命题,故逆否命题也为真命题,故D正确;故选:D【题目点拨】本题考查了判断命题的真假、全称命题的否定、四种命题的转化以及原命题与逆否命题真假关系、相关系数与相关性的关系,属于基础题.5、B【解题分析】分析:设直线方程为,联立方程组得出A,B两点坐标的关系,根据抛物线的性质得出关于A,B两点坐标的式子,使用基本不等式得出最小值.详解:抛物线的焦点,设直线方程为,联立方程组,得,设,则,,由抛物线的性质得,.故选:B.点睛:本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.6、D【解题分析】

先化简与,再根据它们虚部相等求出m的值.【题目详解】由题得,因为复数与的虚部相等,所以.故选D【题目点拨】本题主要考查复数的运算和复数相等的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解题分析】

根据渐近线得到,得到离心率.【题目详解】双曲线的渐近线方程为,则,,.故选:.【题目点拨】本题考查了双曲线的离心率,意在考查学生的计算能力.8、B【解题分析】试题分析:如图所示,设,其中,则,故选B.考点:抛物线.9、A【解题分析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10、A【解题分析】

利用正弦函数对称轴位置特征,可得值,从而求出解析式,利用的图像与性质逐一判断即可.【题目详解】∵是图象的一条对称轴的方程,∴,又,∴,∴.图象的对称中心为,故A正确;由于的正负未知,所以不能判断的单调性和最值,故B,D错误;,故C错误.故选A.【题目点拨】本题主要考查三角函数的图像与性质.11、C【解题分析】

试题分析:令,则,当时,,由的导数为,当时,在递增,即有,则方程无解;当时,成立,由,即,解得且;或解得,即为,综上所述实数的取值范围是,故选C.考点:分段函数的综合应用.【方法点晴】本题主要考查了分段函数的综合应用,其中解答中涉及到函数的单调性、利用导数研究函数的单调性、函数的最值等知识点的综合考查,注重考查了分类讨论思想和转化与化归思想,以及学生分析问题和解答问题的能力,试题有一定的难度,属于难题,本题的解答中构造新的函数,利用新函数的性质是解答的关键.12、B【解题分析】

构造函数,考查该函数的单调性,结合零点存在定理得出答案.【题目详解】构造函数,则该函数在上单调递增,,,,由零点存在定理可知,方程的实根所在区间为,故选B.【题目点拨】本题考查零点所在区间,考查零点存在定理的应用,注意零点存在定理所适用的情形,必要时结合单调性来考查,这是解函数零点问题的常用方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

首先确定线段AB所在的方程,然后求解其垂直平分线方程,最后确定线段的中垂线与轴交点的横坐标即可.【题目详解】设直线的倾斜角为,由抛物线的焦点弦公式有:,则,由抛物线的对称性,不妨取直线AB的斜率,则直线的方程为:,与抛物线方程联立可得:,由韦达定理可得:,设的中点,则,,其垂直平分线方程为:,令可得,即线段的中垂线与轴交点的横坐标为.【题目点拨】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.14、【解题分析】当m=0时,符合题意.当m≠0时,,则0<m<4,则0⩽m<4答案为:.点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.15、【解题分析】

根据题意,由于题目中给出了较多的边和角,根据题目列出对应的正余弦定理的关系式,能较快解出BD的长度.【题目详解】根据题意,以点A为原点,AC所在直线为x轴建立平面直角坐标系。过点B作垂直AC交AC于点E,则,又因为在中,,所以,,故.【题目点拨】本题主要考查学生对于正余弦定理的掌握,将几何问题转化为坐标系下的问题是解决本题的关键.16、3【解题分析】分析:求函数的导数,可判断在上的单调性,求出函数在闭区间上的极大值,可得最大值,从而可得结果.详解:函数的的导数,,由解得,此时函数单调递减.由,解得或,此时函数单调递增.即函数在上单调递增,在上单调递减,即函数在处取得极大值同时也是最大值,则,故答案为.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)有的把握认为与之间具有线性相关关系;(3).【解题分析】

(1)根据题知随机变量的可能取值为、,利用古典概型概率公式计算出和时的概率,可列出随机变量的分布列,由数学期望公式可计算出;(2)根据相关系数公式计算出相关系数的值,结合题中条件说明由的把握认为变量与变量有线性相关关系;(3)对两边取自然对数得出,设,由,可得出,利用最小二乘法计算出关于的回归直线方程,进而得出关于的回归方程.【题目详解】(1)组数据中需要充电的数据组数为组.的所有可能取值为、.,.的分布列如下:;(2)由题意知,,有的把握认为与之间具有线性相关关系;(3)对两边取对数得,设,又,则,,易知,.,,所求的回归方程为,即.【题目点拨】本题考查随机变量分布列与数学期望、相关系数的计算、非线性回归方程的求解,解题时要理解最小二乘法公式及其应用,考查计算能力,属于中等题.18、(1);(2)【解题分析】

(1)令,通过零点分段法可得解析式,进而将不等式变为,在每一段上分别构造不等式即可求得结果;(2)将问题转化为的值域是值域的子集的问题;利用零点分段法可确定解析式,进而得到值域;利用绝对值三角不等式可求得的最小值,由此可构造不等式求得结果.【题目详解】(1)令,由得:得或或,解得:.即不等式的解集为.(2)对任意,都有,使得成立,则的值域是值域的子集.,值域为;,,解得:或,即的取值范围为.【题目点拨】本题考查绝对值不等式的求解、与绝对值不等式有关的恒成立和能成立问题的求解,涉及到零点分段法和绝对值三角不等式的应用;关键是能够将恒、能成立问题转化为两函数的值域之间的关系,进而通过最值确定不等式.19、(Ⅰ)抛物线的方程为;(Ⅱ)直线的方程为或.【解题分析】分析:(Ⅰ)由题意可知椭圆的焦点坐标为,则,抛物线的方程为.(Ⅱ)依题意,可设直线的方程为.联立直线方程与抛物线方程可得,结合韦达定理可得则,解得.直线的方程为或.详解:(Ⅰ)因为椭圆的焦点坐标为,而抛物线与椭圆有共同的焦点,所以,解得,所以抛物线的方程为.(Ⅱ)依题意,可设直线的方程为.联立,整理得,由题意,,所以或.则.则,.则又已知,所以,解得.所以直线的方程为或.化简得直线的方程为或.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.20、(1)不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①约为1683人,②见解析【解题分析】

(1)根据题目所给信息,完成表2,根据表中数据计算K2的观测值k,查表判断即可;

(2)利用频率分布直方图求解平均数和标准差,推出正式测试时,μ=185+10=195,σ=13,μ-σ=1.

①,由此可推出人数.

②由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,得到ξ服从,求出ξ的分布列,然后求解期望即可.【题目详解】(1)在抽取的

100

人中

满分的总人数为

100×(0.03+0.01+0.008)×10=48人,男生满分的有

28

人,所以女生满分的有

20

人,男生共有

46

人,女生

54

人,所以男生跳绳个数不足

185

个的有46−28=18人,女生跳绳个数不足

185

的有

54−20=34

人,完成表2如下图所示:跳绳个数合计男生281846女生203454合计4852100由公式可得,因为,所以不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①根据频率分布直方图可得初三上学期跳绳个数的平均数:,而,所以正式测试时,,故服从正态分布

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论