版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威市第四中学2024届数学高二第二学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.42.曲线在处的切线的倾斜角是()A. B. C. D.3.为了调查胃病是否与生活规律有关,某同学在当地随机调查了500名30岁以上的人,并根据调查结果计算出了随机变量的观测值,则认为30岁以上的人患胃病与生活无规律有关时,出错的概率不会超过()附表:A.0.001 B.0.005 C.0.010 D.0.0254.已知向量,且,则等于()A.1 B.3 C.4 D.55.已知甲口袋中有个红球和个白球,乙口袋中有个红球和个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为,则()A. B. C. D.6.如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是()A.4+2 B.9+32 C.7.己知三边,,的长都是整数,,如果,则符合条件的三角形的个数是()A. B. C. D.8.随机变量的分布列如下:-101若,则的值是()A. B. C. D.9.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A.150 B.200 C.300 D.40010.下列命题:①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联②若二项式的展开式中所有项的系数之和为,则展开式中的系数是③随机变量服从正态分布,则④若正数满足,则的最小值为其中正确命题的序号为()A.①②③ B.①③④ C.②④ D.③④11.已知函数的图象如图所示,若,且,则的值为()A. B. C.1 D.012.在△中,为边上的中线,为的中点,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数与常数项相等,则正数______.14.甲和乙玩一个猜数游戏,规则如下:已知六张纸牌上分别写有1﹣六个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我知道谁手中的数更大了.假设甲、乙所作出的推理都是正确的,那么乙手中可能的数构成的集合是_____15.已知复数,则复数的实部和虚部之和为______.16.的展开式中的有理项共有__________项.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了“运动参与度”统计评分(满分100分),得到了如下的频率分布直方图:(1)求这4000人的“运动参与度”的平均得分(同一组中数据用该组区间中点作代表);(2)由直方图可认为这4000人的“运动参与度”的得分服从正态分布,其中,分别取平均得分和方差,那么选取的4000人中“运动参与度”得分超过84.81分(含84.81分)的人数估计有多少人?(3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记“运动参与度”的得分不超过84.81分的人数为,求.(精确到0.001)附:①,;②,则,;③.18.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;(Ⅱ)若,求的值.19.(12分)如图,平面,,,,,是的中点.(1)求证:平面;(2)求二面角的余弦值.20.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.21.(12分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.22.(10分)如图所示,在三棱柱中,是边长为4的正方形,,.(l)求证:;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.2、B【解题分析】分析:先求导数,再根据导数几何意义得斜率,最后得倾斜角.详解:因为,所以所以曲线在处的切线的斜率为因此倾斜角是,选B.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.3、D【解题分析】
把相关指数的观测值与临界值比较,可得判断30岁以上的人患胃病与生活无规律有关的可靠性程度及犯错误的概率.【题目详解】∵相关指数的观测值,∴在犯错误的概率不超过的情况下,判断岁以上的人患胃病与生活无规律有关.故选:D.【题目点拨】本题考查了独立性检验思想方法,熟练掌握在独立性检验中,观测值与临界值大小比较的含义是解题的关键.4、D【解题分析】
先根据已知求出x,y的值,再求出的坐标和的值.【题目详解】由向量,且,则,解得,所以,所以,所以,故答案为D【题目点拨】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解题分析】
先求出的可能取值及取各个可能取值时的概率,再利用可求得数学期望.【题目详解】的可能取值为.表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故.表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故.表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故.所以.故选A.【题目点拨】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布,也可以直接利用公式求期望.6、B【解题分析】
画出几何体的直观图,利用三视图的数据,求解几何体的表面积即可.【题目详解】几何体的直观图如图:所以几何体的表面积为:3+3×1故选:B.【题目点拨】本题考查了根据三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.7、D【解题分析】
根据题意,可取的值为1、2、3、…25,由三角形的三边关系,有,对分情况讨论,分析可得可取的情况,即可得这种情况下符合条件的三角形的个数,由分类计数原理,结合等差数列的前项和公式,计算可得答案.【题目详解】解:根据题意,可取的值为1、2、3、…25,
根据三角形的三边关系,有,
当时,有25≤<26,则=25,有1种情况,
当时,有25≤<27,则=25、26,有2种情况,
当时,有25≤<28,则=25、26、27,有3种情况,
当时,有25≤<29,则=25、26、27、28,有4种情况,
…
当时,有有25≤<50,则=25、26、27、28…49,有25种情况,
则符合条件的三角形共有1+2+3+4+…+25=;
故选:D.【题目点拨】本题考查分类计数原理的运用,涉及三角形三边的关系,关键是发现变化时,符合条件的三角形个数的变化规律.8、D【解题分析】由题设可得,,所以由随机变量的方差公式可得,应选答案D。9、C【解题分析】
求出,即可求出此次数学考试成绩在90分到105分之间的人数.【题目详解】∵,,所以,所以此次数学考试成绩在90分到105分之间的人数约为.故选C.【题目点拨】本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.10、B【解题分析】
根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.【题目详解】①,则有的把握确认这两类指标间有关联,①正确;②令,则所有项的系数和为:,解得:则其展开式通项为:当,即时,可得系数为:,②错误;③由正态分布可知其正态分布曲线对称轴为,③正确;④,,(当且仅当,即时取等号),④正确.本题正确选项:【题目点拨】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.11、C【解题分析】由题意得,,则,又,即,解得,所以,令,即,,解得该函数的对称轴为,则,即,所以,故选C.12、A【解题分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据二项展开式的通项公式,求出展开式中的系数、展开式中的常数项,再根据它们相等,求出的值.【题目详解】解:因为的展开式的通项公式为,令,求得,故展开式中的系数为.令,求得,故展开式中的系数为,所以,因为为正数,所以.故答案为:.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14、【解题分析】
根据题意,先推出甲不是最大与最小的数,再讨论乙的所有情形,即可得出答案.【题目详解】由题意,六个数字分别为.由甲说他不知道谁手中的数更大,可推出甲不是最大与最小的数,若乙取出的数字是或,则他知道甲的数字比他大还是小;若乙取出的数字是或,则他知道甲的数字比他大还是小;若乙取出的数字是或,则他不知道谁的数字更大.故乙手中可能的数构成的集合是.【题目点拨】本题考查了简单的推理,要注意仔细审题,属于基础题.15、0【解题分析】
先化简求得再计算实部和虚部的和即可.【题目详解】,故实部和虚部之和为.故答案为:0【题目点拨】本题主要考查复数的基本运算与实部虚部的概念,属于基础题型.16、3【解题分析】,,因为有理项,所以,共三项。填3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平均成绩为70.5分(2)人(3)【解题分析】
(1)先计算中间值和对应概率,相乘再相加得到答案.(2)先计算服从正态分布,根据公式得到答案.(3)先计算概率,再利用二项分布公式得到答案.【题目详解】(1)由题意知:中间值455565758595概率0.10.150.20.30.150.1∴,∴这4000人“运动参与度”得分的平均成绩为70.5分.(2)依题意服从正态分布,其中,,,∴服从正态分布,而,∴.∴这4000人中“运动参与度”得分超过84.81分的人数估计为人人.(3)全市所有人的“运动参与度”得分不超过84.81分的概率.而,∴.【题目点拨】本题考查了平均值,正态分布,二项分布,概率.综合性较强,意在考查学生解决问题的能力.18、(Ⅰ),(Ⅱ).【解题分析】试题分析:(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为.(Ⅱ)由直线参数方程几何意义有,因此将直线的参数方程代入曲线的直角坐标方程中,得,由韦达定理有.解之得:或(舍去)试题解析:(Ⅰ)由得,∴曲线的直角坐标方程为.直线的普通方程为.(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,得,设两点对应的参数分别为,则有.∵,∴,即.∴.解之得:或(舍去),∴的值为.考点:极坐标方程化为直角坐标,参数方程化普通方程,直线参数方程几何意义19、(1)证明见解析;(2).【解题分析】
可以以为轴、为轴、为轴构建空间直角坐标系,写出的空间坐标,通过证明得证平面通过求平面和平面的法向量得证二面角的余弦值.【题目详解】(1)根据题意,建立以为轴、为轴、为轴的空间直角坐标系,则,,,因为,所以.因为平面,且,所以平面.(2)设平面的法向量为,则因为,所以.令,则.所以是平面的一个法向量.因为平面,所以是平面的法向量.所以由此可知,与的夹角的余弦值为.根据图形可知,二面角的余弦值为.【题目点拨】在计算空间几何以及二面角的时候,可以借助空间直角坐标系.20、(1);(2)或【解题分析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性上消化道出血护理
- 制茶网络培训课程设计
- 平面设计师的视觉创意
- 关于消力池的课程设计
- 生活委员工作规划
- 直肠癌化疗护理措施
- pts课课程设计范文
- 发动机汽缸和气门的设计和性能分析考核试卷
- 同济大学混凝土课程设计
- 玻璃制造中的质量控制与检测考核试卷
- 可涂色简笔画打印(共20页)
- 1#玻璃合格证
- 机械常用材料及工艺性
- 时分的认识(课件)3
- 北京链家房地产房屋买卖合同(标准版)范本
- 国家中医药管理局“十一五”重点专科(专病)评估细则
- 基板铜箔半固化片检验标准书(共27页)
- 《解决问题(座位数够不够)》教学设计
- 气瓶安全检查要点与安全管理细则+17张常见气瓶隐患图详解
- 阿姨帮家庭保洁小时工O2O平台
- 管理学,罗宾斯,9版,教师手册robbins_fom9_im_01
评论
0/150
提交评论