




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省等三省十校数学高二第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;④对分类变量与,若它们的随机变量的观测值越小,则判断“与有关系”的把握程度越大.其中正确的说法是A.①④ B.②④ C.①③ D.②③2.设i是虚数单位,则复数i3A.-i B.i C.1 D.-13.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为A. B. C. D.4.在等比数列{an}中,Sn是它的前n项和,若q=2,且a2与2a4的等差中项为18,则S5=()A.-62 B.62 C.32 D.-325.函数是()A.偶函数且最小正周期为2 B.奇函数且最小正周期为2C.偶函数且最小正周期为 D.奇函数且最小正周期为6.“b2=ac”是“a,b,c成等比数列”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若集合,则实数的取值范围是()A. B.C. D.8.函数的极大值为()A.3 B. C. D.29.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.10.已知定义域为的奇函数,当时,满足,则()A. B. C. D.11.如图,在直角梯形中,,是的中点,若在直角梯形中投掷一点,则以,,2为三边构成的三角形为钝角三角形的概率为()A. B. C. D.12.一组统计数据与另一组统计数据相比较()A.标准差一定相同 B.中位数一定相同C.平均数一定相同 D.以上都不一定相同二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中项的系数为______.14.函数f(x)=sinx+aex的图象过点(0,2),则曲线y=f(x)在(0,2)处的切线方程为__15.若则的值为_______.16.已知函数(),若对任意,总存在满足,则正数a的最小值是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.(1)求a1,a2,a3,并猜想{an}的通项公式;(2)证明(1)中的猜想.18.(12分)己知复数满足,,其中,为虚数单位.(l)求:(2)若.求实数的取值范围.19.(12分)已知函数的定义域是,关于的不等式的解集为.(1)求集合;(2)已知,,若是的必要不充分条件,试求实数的取值范围.20.(12分)在长方体中,底面是边长为2的正方形,是的中点,是的中点.(1)求证:平面;(2)若,求二面角的正弦值.21.(12分)某市交通管理有关部门对年参加驾照考试的岁以下的学员随机抽取名学员,对他们的科目三(道路驾驶)和科目四(安全文明相关知识)进行两轮测试,并把两轮成绩的平均分作为该学员的抽测成绩,记录数据如下:学员编号科目三成绩科目四成绩(1)从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;(2)根据规定,科目三和科目四测试成绩均达到分以上(含分)才算合格,从抽测的到号学员中任意抽取两名学员,记为抽取学员不合格的人数,求的分布列和数学期望.22.(10分)在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据残差点分布和相关指数的关系判断①是否正确,根据相关指数判断②是否正确,根据回归直线的知识判断③是否正确,根据联表独立性检验的知识判断④是否正确.【题目详解】残差点分布宽度越窄,相关指数越大,故①错误.相关指数越大,拟合效果越好,故②正确.回归直线方程斜率为故解释变量每增加一个单位时,预报变量平均增加个单位,即③正确.越大,有把握程度越大,故④错误.故正确的是②③,故选D.【题目点拨】本小题主要考查残差分析、相关指数、回归直线方程和独立性检验等知识,属于基础题.2、C【解题分析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果.详解:i3∴复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3、D【解题分析】试题分析:设的中点为,连接,易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为,则,由余弦定理,得,故选D.考点:异面直线所成的角.4、B【解题分析】
先根据a2与2a4的等差中项为18求出,再利用等比数列的前n项和求S5.【题目详解】因为a2与2a4的等差中项为18,所以,所以.故答案为:B【题目点拨】(1)本题主要考查等比数列的通项和前n项和,考查等差中项,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)等比数列的前项和公式:.5、C【解题分析】
首先化简为,再求函数的性质.【题目详解】,是偶函数,故选C.【题目点拨】本题考查了三角函数的基本性质,属于简单题型.6、B【解题分析】7、D【解题分析】
本题需要考虑两种情况,,通过二次函数性质以及即集合性质来确定实数的取值范围。【题目详解】设当时,,满足题意当时,时二次函数因为所以恒大于0,即所以,解得。【题目点拨】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论。8、B【解题分析】
求得函数的导数,得出函数的单调性,再根据集合的定义,即可求解.【题目详解】由题意,函数,则,令,即,解得或,令,即,解得,即函数在上函数单调递增,在上函数单调递减,所以当时,函数取得极大值,极大值,故选B.【题目点拨】本题主要考查了利用导数研究函数的单调性,以及求解函数的极值问题,其中解答中熟记导数与原函数的单调性之间的关系,以及极值的概念是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】
求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【题目详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【题目点拨】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.10、D【解题分析】分析:通过计算前几项,可得n=3,4,…,2018,数列以3为周期的数列,计算可得所求和.详解:定义域为R的奇函数f(x),可得f(﹣x)=﹣f(x),当x>0时,满足,可得x>时,f(x)=f(x﹣3),则f(1)=﹣log25,f(2)=f(﹣1)=﹣f(1)=log25,f(3)=f(0)=0,f(4)=f(1)=﹣log25,f(5)=f(2)=f(﹣1)=﹣f(1)=log25,f(6)=f(3)=f(0)=0,f(7)=f(4)=f(1)=﹣log25,f(8)=f(2)=f(﹣1)=﹣f(1)=log25,…f(1)+f(2)+f(3)+…+f(2020)=﹣log25+log25+(0﹣log25+log25)×672=0,故选:D.点睛:归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.11、C【解题分析】
根据,,2为三边构成的三角形为钝角三角形建立不等式,其几何意义为以原点为圆心,半径为2的圆在第一象限的部分,用此部分去掉即为符合条件的的运动区域,作出面积比即可【题目详解】由题,,,故设为最长边长,以,,2为三边构成的三角形为钝角三角形,即以原点为圆心,半径为的圆,,故选【题目点拨】本题考查钝角三角形的三边关系,几何意义转化的能力及几何概型12、D【解题分析】
根据数据变化规律确定平均数、标准差、中位数变化情况,即可判断选择.【题目详解】设数据平均数、标准差、中位数分别为因为,所以数据平均数、标准差、中位数分别为,即平均数、标准差、中位数与原来不一定相同,故选:D【题目点拨】本题考查数据变化对平均数、标准差、中位数的影响规律,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由二项式定理可得展开式通项公式,令幂指数等于可求得,代入通项公式可确定所求项的系数.【题目详解】展开式通项公式为:令,解得:项的系数为故答案为:【题目点拨】本题考查利用二项式定理求解指定项的系数问题,关键是能够熟练掌握二项展开式通项公式的形式,属于基础题.14、【解题分析】
先根据求得的值,然后利用导数求得切线的斜率,由此求得切线方程.【题目详解】由可得,从而,,故在处的切线方程为,即切线方程为.【题目点拨】本小题主要考查函数解析式的求法,考查在函数图像上一点处切线方程的求法,属于基础题.15、【解题分析】
由排列数和组合数展开可解得n=6.【题目详解】由排列数和组合数可知,化简得,所以n=6,经检验符合,所以填6.【题目点拨】本题考查排列数组合数方程,一般用公式展开或用排列数组合公式化简,求得n,注意n取正整数且有范围限制。16、【解题分析】
对任意,总存在满足,只需函数的值域为函数的值域的子集.【题目详解】函数()是对勾函数,对任意,在时,即取得最小值,值域为当时,若,即时在上是单减函数,在上是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.显然成立当时,若,即时是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.,解得综上正数a的最小值是故答案为:【题目点拨】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a1=-1;a2=-;a3=-;猜想an=-(n∈N*)(2)证明见解析【解题分析】
(1)分别令n=1、2,通过解一元二次方程结合已知的递推公式可以求出a1,a2,同理求出a3,根据它们的值的特征猜想{an}的通项公式;(2)利用数学归纳法,通过解一元二次方程可以证明即可.【题目详解】(1)当n=1时,由已知得a1=+-1,即∴当n=2时,由已知得a1+a2=+-1,将a1=-1代入并整理得+2a2-2=0.∴a2=-(a2>0).同理可得a3=-.猜想an=-(n∈N*).(2)【证明】①由(1)知,当n=1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即ak=-.由于ak+1=Sk+1-Sk=+--,将ak=-代入上式,整理得+2ak+1-2=0,∴ak+1=-,即n=k+1时通项公式成立.根据①②可知,对所有n∈N*,an=-成立.【题目点拨】本题考查了通过数列前几项的值,猜想数列的通项公式,并用数学归纳法证明猜想,属于基础题.18、(1)(2)【解题分析】
根据复数的概念和复数的运算法则求解.【题目详解】解:(1)(2)∴,解得:;【题目点拨】本题考查共轭复数、复数的模和复数的运算,属于基础题.19、(1)当时,;当时,;当时,(2)【解题分析】
(1)由含参二次不等式的解法可得,只需,,即可得解;(2)由函数定义域的求法求得,再结合命题间的充要性求解即可.【题目详解】解:(1)因为,所以,当时,;当时,方程无解;当时,,故当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.(2)解不等式,即,即,解得,即,由,,若是的必要不充分条件,可得是的真子集,则当时,则,即;当时,显然满足题意;当时,则,即,综上可知:,故实数的取值范围为.【题目点拨】本题考查了函数定义域的求法、含参二次不等式的解法及充要条件,重点考查了分类讨论的数学思想方法及简易逻辑,属中档题.20、(1)见解析(2)【解题分析】
(1)由于长方体中,因此只要证,这由中位线定理可得,从而可得线面平行;(2)以为轴建立空间直角坐标系,写出各点坐标,求出平面和平面的法向量,由法向量的夹角与二面角相等或互补可得.【题目详解】(1)证明:连接,∵分别为的中点,∴∵长方体中,,,∴四边形是平行四边形,∴,∴∵平面,平面,∴平面(2)解:在长方体中,分别以为轴建立如图所示空间直角坐标系,则,,,,,,∴,,,设平面的一个法向量,则,取,则同样可求出平面的一个法向量∴∴二面角的正弦值为.【题目点拨】本题考查线面平行的证明,考查用空间向量法求二面角.本题属于基础题型.21、(1);(2)见解析.【解题分析】
(1)根据表格中的数据得出个学员中抽测成绩中大于或等于分的人数,然后利用古典概型的概率公式可计算出所求事件的概率;(2)先根据表格中的数据得出到号学员合格与不合格的人数,可得知随机变量的可能取值有、、,然后再根据超几何分布的概率公式计算出随机变量在相应取值时的概率,并列出分布列,结合数学期望公式可计算出的值.【题目详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 操作手册/克朗斯Krones/灌装机
- 人教版高中语文古诗文背诵与赏析教案
- 运动会上的激烈竞赛事件记叙作文14篇范文
- 生物学遗传学与进化论章节知识练习
- 学校食堂食材配送协议
- 《人教版高中地理教材知识点详解教学教案》
- 游客认知对农业文化遗产景观体验的影响
- 软件采购安装服务合同
- 文言文教学:古代诗歌的韵律与意境
- 零售业商品管理流程
- 医院常见消毒剂的使用
- (更新版)国家开放大学电大专科《机械设计基础》机考网考形考网络题库及答案
- 国开电大《流通概论》形考任务
- 肺癌围手术期靶向治疗
- 《中国企业在“一带一路”沿线国投资风险分析及对策》12000字(论文)
- 2024-2030年中国电镀工艺商业计划书
- 2024天津高考英语试题及答案
- 《储能系统变流器涉网性能硬件在环检测规范编制说明》
- 【提分攻略·河北专用】《专题07 生物的遗传和变异》中考生物大题(解析版)
- 国家开放大学矿井火灾防治课程形成性考核作业1-4
- 初中学校发展规划
评论
0/150
提交评论