版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省大连市普兰店市第六中学高二数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线的一条切线的斜率为2,则切点的横坐标为()A.1 B.ln2 C.2 D.e2.随机变量服从正态分布,则的最小值为()A. B. C. D.3.我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示.由表中数据可得各类岗位的薪资水平高低情况为A.数据挖掘>数据开发>数据产品>数据分析 B.数据挖掘>数据产品>数据开发>数据分析C.数据挖掘>数据开发>数据分析>数据产品 D.数据挖掘>数据产品>数据分析>数据开发4.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种 B.10种 C.12种 D.14种5.已知正项数列{an}的前n项和为Sn,若{an}和{}都是等差数列,且公差相等,则a6=()A. B. C.. D.16.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格.乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是()A.甲B.乙C.丙D.丁7.从甲、乙、丙、丁四人中选取两人参加某项活动,则甲、乙两人有且仅有一人入选的概率为()A. B. C. D.8.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.9.下面四个命题::命题“”的否定是“”;:向量,则是的充分且必要条件;:“在中,若,则“”的逆否命题是“在中,若,则“”;:若“”是假命题,则是假命题.其中为真命题的个数是()A.1 B.2 C.3 D.410.已知向量满足,且与的夹角为,则()A. B. C. D.11.在一段线路中并联着两个独立自动控制的开关,只要其中一个开关能够闭合,线路就可以正常工作.设这两个开关能够闭合的概率分别为0.5和0.7,则线路能够正常工作的概率是()A.0.35 B.0.65 C.0.85 D.12.定积分的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,准线为,过的直线与交于,两点,过作,垂足为,的中点为,若,则__14.已知,满足约束条件,则目标函数的最小值为__________.15.若函数有且只有一个零点,是上两个动点(为坐标原点),且,若两点到直线的距离分别为,则的最大值为__________.16.已知向量满足:,,当取最大值时,______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数当时,求函数在处的切线方程;当时,求函数的最大值。18.(12分)已知.(1)若在上单调递增,上单调递减,求的极小值;(2)当时,恒有,求实数a的取值范围.19.(12分)已知函数.(1)求不等式的解集;(2)若不等式的解集非空,求的取值范围.20.(12分)设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.21.(12分)在四棱锥中,侧面底面ABCD,底面ABCD为直角梯形,,,,,E,F分别为AD,PC的中点.Ⅰ求证:平面BEF;Ⅱ若,求二面角的余弦值.22.(10分)已知函数(1)若不等式的解集为,求实数的值;(2)若不等式对一切实数恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
对函数进行求导,然后让导函数等于2,最后求出切点的横坐标.【题目详解】,由题意可知,因此切点的横坐标为e,故选D.【题目点拨】本题考查了导数的几何意义,考查了导数的运算法则,考查了数学运算能力.2、D【解题分析】
利用正态密度曲线的对称性得出,再将代数式与相乘,展开后可利用基本不等式求出的最小值.【题目详解】由于,由正态密度曲线的对称性可知,,所以,,即,,由基本不等式可得,当且仅当,即当时,等号成立,因此,的最小值为,故选D.【题目点拨】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.3、B【解题分析】
根据表格中的数据计算出各类岗位的平均薪资,比较大小后得出结论。【题目详解】由表格中的数据可知,数据开发岗位的平均薪资为(万元),数据分析岗位的平均薪资为(万元),数据挖掘岗位的平均薪资为(万元),数据产品岗位的平均薪资为(万元)。故选:B。【题目点拨】本题考查样本数据的平均数,熟练利用平均数公式计算样本数据的平均数,是解本题的关键,考查计算能力与数据分析能力,属于中等题。4、B【解题分析】
根据表格进行逻辑推理即可得到结果.【题目详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【题目点拨】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.5、B【解题分析】
设等差数列{an}和{}的公差为d,可得an=a1+(n﹣1)d,=+(n﹣1)d,于是==+d,=+2d,化简整理可得a1,d,即可得出.【题目详解】设等差数列{an}和{}的公差为d,则an=a1+(n﹣1)d,=+(n﹣1)d,∴==+d,=+2d,平方化为:a1+d=d2+2d,2a1+3d=4d2+4d,可得:a1=d﹣d2,代入a1+d=d2+2d,化为d(2d﹣1)=0,解得d=0或.d=0时,可得a1=0,舍去.∴,a1=.∴a6=.故答案为:B【题目点拨】(1)本题主要考查等差数列的通项和前n项和,意在考查学生岁这些知识的掌握水平和分析推理计算能力.(2)本题的关键是利用==+d,=+2d求出d.6、A【解题分析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙,丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾,故甲预测错误.故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7、B【解题分析】
算出总的个数和满足所求事件的个数即可【题目详解】从甲、乙、丙、丁四人中选取两人参加某项活动,总共有种情况其中满足甲乙两人仅有一人入选的有种情况所以甲、乙两人有且仅有一人入选的概率为故选:B【题目点拨】本题考查了古典概型的求法,组合问题的简单应用,属于基础题8、A【解题分析】
根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.9、B【解题分析】
根据全称命题的否定是特称命题判断;根据向量垂直的坐标表示判断;根据逆否命题的定义判断;由且命题的性质判断.【题目详解】:命题“”的否定是“”,不正确;:的充分且必要条件是等价于,即为,正确;:由逆否命题的定义可知,“在中,若,则“”的逆否命题是“在中,若,则“”,正确;:若“”是假命题,则是假命题或是假命题,不正确.所以,真命题的个数是2,故选B.【题目点拨】本题通过对多个命题真假的判断,主要综合考查全称命题的否定、向量垂直的充要条件、逆否命题的定义、“且”命题的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.10、A【解题分析】
根据向量的运算法则展开后利用数量积的性质即可.【题目详解】.故选:A.【题目点拨】本题主要考查数量积的运算,属于基础题.11、C【解题分析】试题分析:线路能够了正常工作的概率=,故选C.考点:独立事件,事件的关系与概率.12、C【解题分析】
根据微积分基本定理,可知求解,即可.【题目详解】故选:C【题目点拨】本题考查微积分基本定理,属于较易题.二、填空题:本题共4小题,每小题5分,共20分。13、16【解题分析】
由题意画出图形,利用几何知识得到直线的斜率,进一步求得直线的方程,与抛物线方程联立,由弦长公式即可得答案.【题目详解】由题意画出图形如图,,为的中点,且,,则直线的倾斜角为,斜率为.由抛物线,得,则直线的方程为.联立,得.则,.【题目点拨】本题主要考查抛物线的定义,直线与抛物线位置关系的应用,以及弦长的求法.14、.【解题分析】,作出约束条件表示的可行域,如图,平移直线,由图可知直线经过点时,取得最小值,且,,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15、【解题分析】
根据函数的奇偶性先求解出的值,然后根据判断出中点的轨迹,再根据转化关系将的最大值转化为圆上点到直线的距离最大值,由此求解出结果.【题目详解】因为的定义域为,且,所以是偶函数,又因为有唯一零点,所以,所以,所以,因为,所以,所以,所以,设的中点为,,如下图所示:所以,又因为,所以,所以的轨迹是以坐标原点为圆心,半径为的圆,所以当取最大值时,为过垂直于的线段与的交点,所以,所以.故答案为:.【题目点拨】本题考查函数奇偶性、圆中的轨迹方程、圆上点到直线的距离最值,属于综合型题型,难度较难.圆上点到一条与圆相离直线的距离最值求解方法:先计算出圆心到直线的距离,则距离最大值为,距离最小值为.16、【解题分析】
根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【题目详解】当且仅当与反向时取等号又整理得:本题正确结果:【题目点拨】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案不唯一,具体见解析【解题分析】
(1)当时,,利用导数的几何意义求曲线的切线方程;(2)求函数的导数,讨论,,三种情况函数的单调性,得到函数的最大值.【题目详解】解:当时,,,所以切线方程为,即当时,当,,单调递增,此时,当时,当,,单调递减,当,,单调递增,此时,又,所以当时,当时,.当时,当,,单调递减,此时综上,当时,,当时,.【题目点拨】本题第二问考查了根据函数的导数求函数的最值,第二问的难点是当时,根据函数的单调性可知函数的最大值是或,需做差讨论得到和的大小关系.18、(1)(2)【解题分析】
(1)先求导,再由题意可得f′(﹣1)=0,从而求得2a=1,从而化简f′(x)=(x+1)(ex﹣1),从而确定极小值点及极小值.(2)对f(x)的导函数进行分析,当时,可得f(x)单增,求得f(x)的最小值为0,当a>1时,可得f(x)在(0,lna)上单减,且f(0)=0,不满足题意,综合可得实数a的取值范围.【题目详解】(1)因为在上单调递增,上单调递减,所以.因为,所以,.所以,所以在上单调递增,上单调递减,上单调递增,所以的极小值为.(2),令,则.若,则时,,为增函数,而,所以当时,,从而.若,则时,,为减函数,,故时,,从而,不符合题意.综上,实数a的取值范围是.【题目点拨】本题考查了单调性的应用及函数极值的概念,考查了恒成立问题的转化,考查了分类讨论的数学思想,属于难题.19、(1);(2)【解题分析】
将函数写出分段函数形式,再分段解不等式。不等式的解集非空即。【题目详解】(1)或或无解或或或原不等式的解集为(2)若要的解集非空只要即可故的取值范围为【题目点拨】本题考查含绝对值的不等式,考查逻辑推理能力与计算能力,属于基础题。20、(1);(2)【解题分析】
(1)去绝对值,将化为分段函数,解不等式即可;(2)根据绝对值三角不等式可知,则有,解不等式即可.【题目详解】(1)当时,,故不等式的解集为;(2),,则或,解得或,故的取值范围为.【题目点拨】本题考查解绝对值不等式,考查绝对值三角不等式的应用,属于中档题.21、(1)见解析;(2).【解题分析】
(1)连接交于,并连接,,由空间几何关系可证得,利用线面平行的判断定理可得平面.(2)(法一)取中点,连,,,由二面角的定义结合几何体的特征可知为二面角的平面角,计算可得二面角的余弦值为.(法二)以为原点,、、分别为、、建立直角坐标系,则平面法向量可取:,平面的法向量,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国安全支架行业投资前景及策略咨询研究报告
- 2024至2030年中国塑胶机行业投资前景及策略咨询研究报告
- 2024至2030年中国全能测试座行业投资前景及策略咨询研究报告
- 2024至2030年氟密封蝶阀项目投资价值分析报告
- 2024年物业服务合同:物业公司与业主之间的服务内容、服务标准及支付方式
- 2025年维修锅炉合同
- 2024年度个人消费贷款合同范本3篇
- 2024年度农业项目中介保密协议及农产品推广合同3篇
- 2024年度土地复垦项目招投标代理与服务合同3篇
- 展览会场馆拆除合同样本
- 2024版短视频IP打造与授权运营合作协议3篇
- 小学生防诈骗安全教育内容
- 2024-2025学年上学期深圳初中地理七年级期末模拟卷3
- 中国当代文学专题-003-国开机考复习资料
- 2024年广东公需科目答案
- 中国马克思主义与当代思考题(附答案)
- (新版)征信知识竞赛基础题库(500题)
- 国内外有关生产流程优化研究发展现状
- 高标准基本农田土地整治项目工程施工费预算表
- 肺栓塞的护理PPT课件
- 高速公路施工安全布控图
评论
0/150
提交评论