2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题含解析_第1页
2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题含解析_第2页
2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题含解析_第3页
2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题含解析_第4页
2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省保山市昌宁一中数学高二第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量OA向量OP=xOA+yOB+zOCA.12 B.1 C.322.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能3.一个几何体的三视图如图所示,若主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为()A. B. C.2 D.44.设f(x)=+x﹣4,则函数f(x)的零点位于区间()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)5.已知,用数学归纳法证明时.假设当时命题成立,证明当时命题也成立,需要用到的与之间的关系式是()A. B.C. D.6.已知是定义域为的奇函数,满足.若,则()A. B. C. D.7.在数列中,,则等于()A.9 B.10 C.27 D.818.函数在上取得最小值时,的值为().A.0 B. C. D.9.下列函数中既是奇函数又在区间(﹣∞,0)上单调递增的函数是()A.y= B.y=x2+1 C.y= D.y=10.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.311.与椭圆共焦点且过点的双曲线方程是()A. B. C. D.12.若(为虚数单位),则复数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对具有线性相关关系的变量,有一组观测数据(),其回归直线方程是,且,则______.14.设实数满足约束条件,则目标函数的最大值为________.15.如图,在三棱柱中,底面,,,是的中点,则直线与所成角的余弦值为__________.16.若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的_________倍;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱,底面,,,为的中点.(I)证明:面;(Ⅱ)求直线与平面所成角的正弦值.18.(12分)已知函数.(1)若,求的零点个数;(2)若,,证明:,.19.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求实数的取值范围.20.(12分)随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.(1)根据数据可知与具有线性相关关系,请建立关于的回归方程(系数精确到);(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元;,则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)参考数据:,,其中,分别为第个月的促销费用和产品销量,.参考公式:(1)对于一组数据,,,,其回归方程的斜率和截距的最小二乘估计分别为,.(2)若随机变量服从正态分布,则,.21.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,交椭圆于两个不同点.(1)求椭圆的标准方程以及的取值范围;(2)求证直线与轴始终围成一个等腰三角形.22.(10分)已知数列满足().(1)计算,,,并写出与的关系;(2)证明数列是等比数列,并求出数列的通项公式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由题求得OP的坐标,求得OP,结合4x+2y+z=4可得答案.【题目详解】=x+y,y,z,OP利用柯西不等式可得42∴OP故选A.【题目点拨】本题考查空间向量的线性坐标运算及空间向量向量模的求法,属基础题.2、A【解题分析】

利用已知条件,分类讨论化简可得.【题目详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【题目点拨】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.3、A【解题分析】

由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,利用所给数据,求出三棱柱与三棱锥的体积,从而可得结果.【题目详解】由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,画出几何体的直观图,如图,把几何体补形为一个直三棱柱,由三视图的性质可知三棱柱的底面面积,高,所以,,所以,几何体的体积为.故选A.【题目点拨】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4、C【解题分析】

根据零点的判定定理,结合单调性直接将选项的端点代入解析式判正负即可.【题目详解】∵f(x)=2x+x﹣4中,y=2x单增,y=x-4也是增函数,∴f(x)=2x+x﹣4是增函数,又f(1)=﹣1<0,f(2)=2>0,故选C.【题目点拨】本题考查了函数零点存在定理的应用,考查了函数单调性的判断,属于基础题.5、C【解题分析】

分别根据已知列出和,即可得两者之间的关系式.【题目详解】由题得,当时,,当时,,则有,故选C.【题目点拨】本题考查数学归纳法的步骤表示,属于基础题.6、C【解题分析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7、C【解题分析】

利用题设中递推公式,构造等比数列,求得等比数列的通项公式,即可求解.【题目详解】由题意,在数列中,,即可得数列表示首项,公比的等比数列,所以,故选C.【题目点拨】本题主要考查了等比数列的定义,以及等比数列的通项公式的应用,其中解答中熟记等比数列的定义和等比数列的通项公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.8、D【解题分析】

根据三角函数的单调性分析求解即可.【题目详解】当时,.根据正弦函数的性质可知,当,即时,取得最小值.故选:D【题目点拨】本题主要考查了三角函数的最值问题,属于基础题.9、A【解题分析】

由函数的奇偶性的定义和常见函数的单调性,即可得到符合题意的函数.【题目详解】对于A,y=f(x)=2x﹣2﹣x定义域为R,且f(﹣x)=﹣f(x),可得f(x)为奇函数,当x<0时,由y=2x,y=﹣2﹣x递增,可得在区间(﹣∞,0)上f(x)单调递增,故A正确;y=f(x)=x2+1满足f(﹣x)=f(x),可得f(x)为偶函数,故B不满足条件;y=f(x)=()|x|满足f(﹣x)=f(x),可得f(x)为偶函数,故C不满足题意;y为奇函数,且在区间(﹣∞,0)上f(x)单调递减,故D不满足题意.故选:A.【题目点拨】本题考查函数的奇偶性和单调性的判断,注意运用常见函数的奇偶性和单调性,考查判断能力,属于基础题.10、C【解题分析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.11、A【解题分析】由椭圆方程可得焦点坐标为,设与其共焦点的双曲线方程为:,双曲线过点,则:,整理可得:,结合可得:,则双曲线方程为:.本题选择A选项.12、B【解题分析】由可得:,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意求得样本中心点,代入回归直线方程即可求出的值【题目详解】由已知,代入回归直线方程可得:解得故答案为【题目点拨】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果14、2【解题分析】分析:由题意,作出约束条件所表示的平面区域,结合图象得到目标函数过点时,取得最大值,即可求解.详解:由题意,作出约束条件所表示的平面区域,如图所示,目标函数,即,当直线在上的截距最大值,此时取得最大值,结合图象可得,当直线过点时,目标函数取得最大值,由,解得,所以目标函数的最大值为.点睛:本题主要考查简单线性规划求解目标函数的最值问题.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求,其关键是准确作出可行域,理解目标函数的意义是解答的关键,着重考查了数形结合法思想的应用.15、【解题分析】分析:记中点为E,则,则直线与所成角即为与所成角,设,从而即可计算.详解:记中点为E,并连接,是的中点,则,直线与所成角即为与所成角,设,,.故答案为.点睛:(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.16、1;【解题分析】

分别计算侧面积和底面积后再比较.【题目详解】由题意,,,∴.故答案为1.【题目点拨】本题考查圆锥的侧面积,掌握侧面积计算公式是解题关键.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)证明见解析;(Ⅱ).【解题分析】

(I)连接,交于,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理可证明平面;(Ⅱ)以,,为,,轴建立空间直角坐标系,并设,计算出平面的一个法向量,记直线平面所成角为,于是得出可得出直线与平面所成角的正弦值。【题目详解】(Ⅰ)证明:连接,交于,所以为的中点,又因为为的中点,所以,因为在面内,不在面内,所以面;(Ⅱ)以,,为,,轴建立空间直角坐标系(不妨设).所以,,,,设面的法向量为,则,解得.因为,记直线平面所成角为.所以.【题目点拨】本题考查直线与平面平行的证明,考查直线与平面所成角的计算,常见的有定义法和空间向量法,可根据题中的条件来选择,考查逻辑推理能力与运算求解能力,属于中等题。18、(1)(2)见解析【解题分析】

(1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。【题目详解】(1)解:因为,所以.令,得或;令,得,所以在,上单调递增,在上单调递减,而,,,所以的零点个数为1.(2)证明:因为,从而.又因为,所以要证,恒成立,即证,恒成立,即证,恒成立.设,则,当时,,单调递增;当时,,单调递减.所以.设,则,当时,,单调递增;当时,,单调递减.所以,所以,所以,恒成立,即,.【题目点拨】本题考查用导数求函数的零点个数以及证明不不等式,运用了构造新的函数的方法。19、(1)(2)【解题分析】分析:(1)先化简集合A,B,再求.(2)先化简集合A,B,再根据AB得到,解不等式得到实数的取值范围.详解:(1)当时,,解得.则.由,得.则.所以.(2)由,得.若AB,则解得.所以实数的取值范围是.点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些知识的掌握水平和基本计算能力.(2)把分式不等式通过移项、通分、因式分解等化成的形式→化成不等式组→解不等式组得解集.20、(1)(2)【解题分析】试题分析:(1)先求均值,再代入公式求以及,即得回归方程,(2)先根据正态分布计算各区间概率,再根据概率乘以总数得频数,最后将频数与对应奖励相乘求和得结果.试题解析:(1)由题可知,,将数据代入得所以关于的回归方程(2)由题6月份日销量服从正态分布,则日销量在的概率为,日销

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论