




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市清华附中数学高二第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列值等于1的积分是()A. B. C. D.2.定义方程的实数根叫做函数的“新驻点”,如果函数的“新驻点”分别为那么的大小关系是()A. B. C. D.3.一个四面体各棱长都为,四个顶点在同一球面上,则此球的表面积为()A. B. C. D.4.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样5.函数在区间上的最大值是()A. B. C. D.6.已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是()A. B. C. D.7.设函数,若不等式恰有两个整数解,则实数的取值范围是()A. B.C. D.8.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为()A. B. C. D.9.函数的最大值为()A. B.1 C. D.10.a,b为空间两条互相垂直的直线,等腰直角三角形的直角边所在直线与a,b都垂直,斜边以为旋转轴选择,有下列结论:①当直线与a成60°角时,与b成30°角;②当直线与a成60°角时,与b成60°角;③直线与a所成角的最小值为45°;④直线与a所成角的最大值为60°;其中正确的是_______.(填写所以正确结论的编号).A.①③ B.①④ C.②③ D.②④11.已知抛物线,过点的任意一条直线与抛物线交于两点,抛物线外一点,若∠∠,则的值为()A. B. C. D.12.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题:本题共4小题,每小题5分,共20分。13.设O是原点,向量对应的复数分别为那么,向量对应的复数是.14.已知定义在R上的函数是奇函数且满足,则_________.15.计算:_________16.乒乓球比赛,三局二胜制.任一局甲胜的概率是,甲赢得比赛的概率是,则的最大值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列()的通项公式为().(1)分别求的二项展开式中的二项式系数之和与系数之和;(2)求的二项展开式中的系数最大的项;(3)记(),求集合的元素个数(写出具体的表达式).18.(12分)在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与曲线相切.(1)求曲线的极坐标方程;(2)在曲线上任取两点,,该两点与原点构成,且满足,求面积的最大值.19.(12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为.喜欢盲拧不喜欢盲拧总计男10女20总计100表(1)并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:完成时间(分钟)[0,10)[10,20)[20,30)[30,40]频率0.20.40.30.1表(2)(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表(2)中完成时间在[30,40]内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.(参考公式:,其中)P(K2≥k0)0.100.050.0250.0100.0050.001k02.7063.8415.0246.6357.87910.82820.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.21.(12分)在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,曲线,极坐标方程分别为,.(Ⅰ)和交点的极坐标;(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于,两点,求.22.(10分)选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程;(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
分别求出被积函数的原函数,然后根据定积分的定义分别计算看其值是否为1即可.【题目详解】解:选项A,xdxx2,不满足题意;选项B,(x+1)dx=(x2+x)1,不满足题意;选项C,1dx=x1﹣0=1,满足题意;选项D,dxx0,不满足题意;故选C.考点:定积分及运算.2、D【解题分析】
由已知得到:,对于函数h(x)=lnx,由于h′(x)=
令,可知r(1)<0,r(2)>0,故1<β<2
,且,选D.3、A【解题分析】试题分析:正四面体扩展为正方体,二者有相同的外接球,通过正方体的对角线的长度就是外接球的直径,求出球的表面积.由于正四面体扩展为正方体,二者有相同的外接球,所以正方体的棱长为:1,所以正方体的对角线的长度就是外接球的直径,所以球的半径为,所以球的表面积为:,故选A.考点:球内接多面体4、C【解题分析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.5、B【解题分析】
函数,,令,解得x.利用三角函数的单调性及其导数即可得出函数的单调性.【题目详解】函数,,令,解得.∴函数在内单调递增,在内单调递减.∴时函数取得极大值即最大值..故选B.【题目点拨】本题考查了三角函数的单调性,考查利用导数研究函数的单调性极值与最值、考查了推理能力与计算能力,属于中档题.求三角函数的最值问题,一般是通过两角和差的正余弦公式将函数表达式化为一次一角一函数,或者化为熟悉的二次函数形式的复合函数来解决.6、B【解题分析】分析:利用过一、三象限的渐近线的倾斜角θ∈[,],可得1≤≤,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a>0,b>0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角θ∈[,],∴tan≤≤tan,∴1≤≤,∴1≤≤3,∴2≤1+≤4,即2≤e2≤4,解得≤e≤2,故选:B.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.7、D【解题分析】
求出函数的定义域、化简不等式,构造新函数,结合函数的图象,从而可得的范围,得到答案.【题目详解】由题意,函数的定义域为,不等式,即,即,两边除以,可得,又由直线恒过定点,若不等式恰有两个整数解,即函数图象有2个横坐标为整数的点落在直线的上方,由图象可知,这2个点为,可得,即,解得,即实数的取值范围是,故选D.【题目点拨】本题主要考查了函数的零点的综合应用,其中解答中把不等式的解,转化为函数的图象的关系,合理得出不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、A【解题分析】设圆的半径为,则圆的面积,正六边形的面积,所以向圆中随机投掷一个点,该点落在正六边形内的概率,故选A.9、A【解题分析】
由题意求得导数,得到函数单调性,即可求解函数的最大值,得到答案.【题目详解】由题意,可得,当时,,则函数单调递增;当时,,则函数单调递减,所以函数的最大值为,故选A.【题目点拨】本题主要考查了利用导数求解函数的最值问题,其中解答中求得函数的导数,得出函数的单调性是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】
由题意知,、、三条直线两两相互垂直,构建如图所示的边长为1的正方体,,,斜边以直线为旋转轴,则点保持不变,点的运动轨迹是以为圆心,1为半径的圆,以坐标原点,以为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出结果.【题目详解】解:由题意知,、、三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故,,斜边以直线为旋转轴,则点保持不变,点的运动轨迹是以为圆心,1为半径的圆,以坐标原点,以为轴,为轴,为轴,建立空间直角坐标系,则,0,,,0,,直线的方向单位向量,1,,,直线的方向单位向量,0,,,设点在运动过程中的坐标中的坐标,,,其中为与的夹角,,,在运动过程中的向量,,,,,设与所成夹角为,,则,,,,③正确,④错误.设与所成夹角为,,,当与夹角为时,即,,,,,,,此时与的夹角为,②正确,①错误.故选:.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,属于中档题.11、D【解题分析】
设出点和直线,联立方程得到关于的韦达定理,将转化为斜率相反,将根与系数关系代入得到答案.【题目详解】设,设直线AB:又恒成立即答案为D【题目点拨】本题考查了直线和抛物线的位置关系,定点问题,设直线方程时消去可以简化运算,将角度关系转化为斜率关系是解题的关键,计算量较大,属于难题.12、B【解题分析】
利用象限角的定义直接求解,即可得到答案.【题目详解】由题意,,所以表示第二象限角,故选B.【题目点拨】本题主要考查了角所在象限的判断,考查象限角的定义等基础知识,考查了推理能力与计算能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】解:因为=(2+3,-3-2)=(5,-5),所以向量对应的复数是5-5i14、0【解题分析】
根据奇函数的性质可知,由可求得周期和,利用周期化简所求式子可求得结果.【题目详解】为定义在上的奇函数,.由得:,是周期为的周期函数,令得:..故答案为:.【题目点拨】本题考查利用函数的奇偶性和周期性求解函数值的问题,关键是能够根据抽象函数关系式推导得到函数的周期.15、【解题分析】
直接利用定积分公式计算即可。【题目详解】【题目点拨】本题主要考查了定积分计算,考查计算能力,属于基础题。16、【解题分析】分析:采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率;进而求得的最大值.详解:采用三局两胜制,
则甲在下列两种情况下获胜:(甲净胜二局),(前二局甲一胜一负,第三局甲胜).因为与互斥,所以甲胜概率为则设即答案为.,注意到,则函数在和单调递减,在上单调递增,故函数在处取得极大值,也是最大值,最大值为即答案为.点睛:本题考查概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),0;(2),;(3).【解题分析】
(1)根据二项展开式直接得二项式系数之和为,利用赋值法求二项展开式中的系数之和;(2)根据二项展开式通项公式得系数,再列方程组解得系数最大的项;(3)先根据二项式定理将展开成整数与小数,再根据奇偶性分类讨论元素个数,最后根据符号数列合并通项.【题目详解】(1)二项展开式中的二项式系数之和为,令得二项展开式中的系数之和为;(2)设二项展开式中的系数最大的项数为则因此二项展开式中的系数最大的项为,(3)所以当为偶数时,集合的元素个数为当为奇数时,集合的元素个数为综上,元素个数为【题目点拨】本题考查二项式系数之和、二项式展开式各项系数之和、二项式展开式中系数最大项以及利用二项式展开式计数,考查综合分析求解与应用能力,属较难题.18、(1);(2)【解题分析】
(1)由直线与圆相切,可得圆心到直线的距离等于半径,列方程求解,进而由直角坐标转化为极坐标即可;(2)设,(,,),由,展开利用三角函数求最值即可.【题目详解】(1)由题意可知,直线的直角坐标方程为.曲线是圆心为,半径为的圆,由直线与曲线相切可得.可知曲线的直角坐标方程为.所以曲线的极坐标方程为,即.(2)由(1)不妨设,(,,)..当时,面积的最大值为.【题目点拨】本题主要考查了直角坐标与极坐标的互化,考查了极坐标系下三角形的面积公式,考查了三角函数的最值问题,属于中档题.19、(I)表(1)见解析,在犯错误的概率不超过0.001的前提下认为喜欢盲拧与性别有关;(II)【解题分析】
(I)根据题意计算出在全部的100人中喜欢盲拧的人数,可将表(1)补充完整,利用公式求得,与临界值比较,即可得到结论;(II)首先计算出成功完成时间在内的人数,再利用列举法和古典概型的概率计算公式,计算出所求概率。【题目详解】(I)在全部的100人中喜欢盲拧的人数为人,根据题意列联表如下:喜欢盲拧不喜欢盲拧总计男401050女203050总计6040100由表中数据计算所以能在犯错误的概率不超过0.001的前提下认为喜欢盲拧与性别有关;(Ⅱ)成功完成时间在[30,40]内的人数为设为甲、乙、丙,A,B,C,依题意:从该6人中选出2人,所有可能的情况有:甲乙,甲丙,甲A,甲B,甲C,乙丙,乙A,乙B,乙C,丙A,丙B,丙C,AB,AC,BC.共15种,其中甲、乙、丙3人中恰有一人被抽到有:甲A,甲B,甲C,乙A,乙B,乙C,丙A,丙B,丙C,共9种,故事件A发生的概率为【题目点拨】本题考查独立性检验以及古典概型的概率计算,属于基础题。20、(1);(2).【解题分析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆兵团八师一四三团一中2025年高二物理第二学期期末教学质量检测模拟试题含解析
- 长沙市重点中学2025届高二下物理期末综合测试试题含解析
- 创新型绿色住宅买卖合同范本:环保生活承诺
- 食品企业食品安全应急处理采购合同
- 2025幼儿园后勤年度工作总结(17篇)
- 2025小学教师述职报告怎么写(15篇)
- 公路养护稽查管理制度
- 医院院外器械管理制度
- 电子屏合同(3篇)
- 出让国有土地使用权合同书(4篇)
- JJF 2096-2024 软包装件密封性试验仪校准规范
- 300MW汽轮机热力计算
- 消防安全保密协议
- 2024年甘肃省特岗教师理科综合真题
- 工业自动化中的人机协同生产与智能制造
- 鳞片防腐操作技术方案
- 消化性溃疡基层诊疗指南(2023年)重点内容
- 员工用餐登记表
- 设备安装调试记录表
- 欧松板墙面施工方案
- 小学升初中阶段的语文教学衔接
评论
0/150
提交评论