2024届贵州省贵阳市四校高二数学第二学期期末考试试题含解析_第1页
2024届贵州省贵阳市四校高二数学第二学期期末考试试题含解析_第2页
2024届贵州省贵阳市四校高二数学第二学期期末考试试题含解析_第3页
2024届贵州省贵阳市四校高二数学第二学期期末考试试题含解析_第4页
2024届贵州省贵阳市四校高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省贵阳市四校高二数学第二学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在二项式的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为()A. B. C. D.2.已知为坐标原点,,是双曲线:(,)的左、右焦点,双曲线上一点满足,且,则双曲线的离心率为()A. B.2 C. D.3.已知集合,,则为()A. B. C. D.4.如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是()A.4+2 B.9+32 C.5.小明同学喜欢篮球,假设他每一次投篮投中的概率为,则小明投篮四次,恰好两次投中的概率是()A. B. C. D.6.在等比数列{an}中,Sn是它的前n项和,若q=2,且a2与2a4的等差中项为18,则S5=()A.-62 B.62 C.32 D.-327.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.8.设x0是函数f(x)=lnx+x﹣4的零点,则x0所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2 B. C. D.10.袋中装有6个红球和4个白球,不放回的依次摸出两球,在第一次摸到红球的条件下,第二次摸到红球的概率是A. B. C. D.11.已知tan=4,cot=,则tan(+)=()A. B. C. D.12.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x0∈R使得”的否定是“∀x∈R,均有x2+x+1<0”二、填空题:本题共4小题,每小题5分,共20分。13.函数是上的单调递增函数,则的取值范围是______.14.若""是""的必要不充分条件,则的取值范围是____.15.双曲线的虚轴长为,其渐近线夹角为__________.16.已知集合,集合,那么集合的子集个数为___个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)18.(12分)已知函数f(x)=ln|x|①当x≠0时,求函数y=g(x②若a>0,函数y=g(x)在0,+∞上的最小值是2,求③在②的条件下,求直线y=23x+19.(12分)为纪念“五四运动”100周年,某校团委举办了中国共产主义青年团知识宣讲活动活动结束后,校团委对甲、乙两组各10名团员进行志愿服务次数调查,次数统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以表示.(1)若甲组服务次数的平均值不小于乙组服务次数的平均值,求图中所有可能的取值;(2)团委决定对甲、乙两组中服务次数超过15次的团员授予“优秀志愿者”称号设,现从所有“优秀志愿者”里任取3人,求其中乙组的人数的分布列和数学期望.20.(12分)已知函数的定义域为.(1)若,解不等式;(2)若,求证:.21.(12分)等差数列的各项均为正数,,前n项和为.等比数列中,,且,.(1)求数列与的通项公式;(2)求.22.(10分)若二面角的平面角是直角,我们称平面垂直于平面,记作.(1)如图,已知,,,且,求证:;(2)如图,在长方形中,,,将长方形沿对角线翻折,使平面平面,求此时直线与平面所成角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先根据条件求出,再由二项式定理及展开式通项公式,即可得答案.【题目详解】由已知可得:,所以,则展开式的中间项为,即展开式的中间项的系数为1120.故选:C.【题目点拨】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2、D【解题分析】设P为双曲线右支上一点,=m,=n,|F1F2|=2c,由双曲线的定义可得m−n=2a,点P满足,可得m2+n2=4c2,即有(m−n)2+2mn=4c2,又mn=2a2,可得4a2+4a2=4c2,即有c=a,则离心率e=故选:D.3、A【解题分析】

利用集合的交集运算进行求解即可【题目详解】由题可知集合中,集合中求的是值域的取值范围,所以的取值范围为答案选A【题目点拨】求解集合基本运算时,需注意每个集合中求解的是x还是y,求的是定义域还是值域,是点集还是数集等4、B【解题分析】

画出几何体的直观图,利用三视图的数据,求解几何体的表面积即可.【题目详解】几何体的直观图如图:所以几何体的表面积为:3+3×1故选:B.【题目点拨】本题考查了根据三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.5、D【解题分析】分析:利用二项分布的概率计算公式:概率即可得出.详解::∵每次投篮命中的概率是,

∴在连续四次投篮中,恰有两次投中的概率.

故在连续四次投篮中,恰有两次投中的概率是.故选D.点睛:本题考查了二项分布的概率计算公式,属于基础题.6、B【解题分析】

先根据a2与2a4的等差中项为18求出,再利用等比数列的前n项和求S5.【题目详解】因为a2与2a4的等差中项为18,所以,所以.故答案为:B【题目点拨】(1)本题主要考查等比数列的通项和前n项和,考查等差中项,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)等比数列的前项和公式:.7、C【解题分析】

先将队得分高于队得分的情况列举出来,然后进行概率计算.【题目详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【题目点拨】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.8、C【解题分析】

由函数的解析式可得,再根据函数的零点的判定定理,求得函数的零点所在的区间,得到答案.【题目详解】因为是函数的零点,由,所以函数的零点所在的区间为,故选C.【题目点拨】本题主要考查了函数的零点的判定定理的应用,其中解答中熟记零点的存在定理,以及对数的运算性质是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解题分析】由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率.故选A.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).10、D【解题分析】

通过条件概率相关公式即可计算得到答案.【题目详解】设“第一次摸到红球”为事件A,“第二次摸到红球”为事件B,而,,故,故选D.【题目点拨】本题主要考查条件概率的相关计算,难度不大.11、B【解题分析】

试题分析:由题意得,,故选B.考点:两角和的正切函数.12、C【解题分析】命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,A不正确;由x2-5x-6=0,解得x=-1或6,因此“x=-1”是“x2-5x-6=0”的充分不必要条件,B不正确;命题“若x=y,则sinx=siny”为真命题,其逆否命题为真命题,C正确;命题“∃x0∈R使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,D不正确.综上可得只有C正确.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

在和分别保证对数型函数和一次函数单调递增;根据函数在上单调递增,确定分段处函数值的大小关系;综合所有要求可得结果.【题目详解】当时,若原函数为单调递增函数,则;当时,若原函数为单调递增函数,则,解得:;为上的单调递增函数,,解得:;综上所述:的取值范围为.故答案为:.【题目点拨】本题考查根据分段函数的单调性求解参数范围的问题,易错点是忽略函数在分段函数分段处函数值的大小关系,造成范围求解错误.14、【解题分析】

根据充分条件和必要条件的定义,结合不等式的关系进行求解,即可求得答案.【题目详解】若""是""的必要不充分条件则即即的取值范围是:.故答案为:.【题目点拨】本题考查利用必要不充分条件求参数的取值范围,利用“小范围能推出大范围”即可得出参数的范围,考查了分析能力,属于基础题.15、60°.【解题分析】

计算出的值,得出渐近线的斜率,得出两渐近线的倾斜角,从而可得出两渐近线的夹角.【题目详解】由题意知,双曲线的虚轴长为,得,所以,双曲线的渐近线方程为,两条渐近线的倾斜角分别为、,因此,两渐近线的夹角为,故答案为.【题目点拨】本题考查双曲线渐近线的夹角,解题的关键就是求出渐近线方程,根据渐近线的倾斜角来求解,考查运算求解能力,属于基础题.16、1.【解题分析】

可以求出集合M,N,求得并集中元素的个数,从而得出子集个数.【题目详解】∵M={﹣1,1},N={1,2};∴M∪N={﹣1,1,2};∴M∪N的子集个数为23=1个.故答案为:1.【题目点拨】本题考查描述法、列举法的定义,以及并集的运算,子集的定义,以及集合子集个数的求法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)A部门,理由见解析;(2)的分布列见解析;期望为1;(3)..【解题分析】

(1)通过茎叶图中两部门“叶”的分布即可看出;(2)随机抽取3人,,分别求出相应的概率,即可求出的分布列和期望;(3)求出评价一次两个部门的评价等级不同和相同的概率,随机邀请5名群众,是独立重复实验满足二项分布根据计算公式即可求出.【题目详解】解:(1)通过茎叶图可以看出:A部门的“叶”分布在“茎”的8上,B部门的“叶”分布在“茎”的7上.所以A部门的服务更令群众满意.(2)由茎叶图可知:部门评价为“很满意”或“满意”的样本数量有个,“很满意”的样本数量有个,则从中随机抽取3人,,所以的分布列为:.(3)根据题意可得:A部门“不满意”,“满意”和“很满意”的概率分别为:,,,B部门“不满意”,“满意”和“很满意”的概率分别为:,,.若评价一次两个部门的评价等级不同的概率为:,则评价一次两个部门的评价等级相同的概率为.因为随机邀请5名群众,是独立重复实验,满足二项分布,所以至多有1人对两个部门的评价等级相同的概率为:,所以至多有1人对两个部门的评价等级相同的概率是.【题目点拨】本题考查主要考查茎叶图的集中程度、概率、离散型随机变量的分布列、数学期望的求法、二项分布的求法,属于难题.18、(1)y=g(x)=x+ax;(2)【解题分析】⑴∵f(x∴当x>0时,f(x)=lnx∴当x>0时,f'(x)=1∴当x≠0时,函数y=g(x⑵∵由⑴知当x>0时,g(x∴当a>0,x>0时,g(x)≥2a∴函数y=g(x)在0,+∞上的最小值是2a,∴依题意得2⑶由y=23∴直线y=23x+=724-ln319、(1)的取值为0或1或1.(1)见解析,【解题分析】

(1)根据甲组服务次数的平均值不小于乙组服务次数的平均值列不等式,由此求得的可能取值.(1)根据超几何分布的分布列计算公式,计算出分布列并求得数学期望.【题目详解】(1)甲组10名团员服务次数的平均值为,乙组10名团员服务次数的平均值为.由题意得,即.故图中的取值为0或1或1.(1)由图知,甲组“优秀志愿者”有1人,乙组“优秀志愿者”有3人.由题意,随机变量的所有可能取值为1,1,3,则.所以的分布列为113故.【题目点拨】本小题主要考查根据茎叶图计算平均数,考查超几何分布分布列和期望的计算,考查数据处理能力,属于基础题.20、(1)(2)见解析【解题分析】分析:(1)由可得,然后将不等式中的绝对值去掉后解不等式可得所求.(2)结合题意运用绝对值的三角不等式证明即可.详解:(1),即,则,∴,∴不等式化为.①当时,不等式化为,解得;②当时,不等式化为,解得.综上可得.∴原不等式的解集为.(2)证明:∵,∴.又,∴.点睛:含绝对值不等式的常用解法(1)基本性质法:当a>0时,|x|<a⇔-a<x<a,|x|>a⇔x<-a或x>a.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论