版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市南陵县2023年数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A. B. C. D.2.下列四个图案中,不是轴对称图案的是()A. B.C. D.3.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cm B.50cm C.100cm D.80cm4.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)5.已知二次函数的图像与x轴没有交点,则()A. B. C. D.6.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.87.在一个不透明的布袋中装有红色.白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有().A.34个 B.30个 C.10个 D.6个8.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30° B.35° C.45° D.60°9.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4)C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,4)10.边长等于6的正六边形的半径等于()A.6 B. C.3 D.11.的相反数是()A. B. C. D.312.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为()A. B.0 C. D.二、填空题(每题4分,共24分)13.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.14.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.15.在一个不透(明的袋子中装有除了颜色外其余均相同的个小球,其中红球个,黑球个,若再放入个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则的值为__________.16.如图,的对角线交于O,点E为DC中点,AC=10cm,△OCE的周长为18cm,则的周长为____________.17.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.18.已知二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,则b的值为_____.三、解答题(共78分)19.(8分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)20.(8分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.21.(8分)如图,已知反比例函数与一次函数的图象相交于点A、点D,且点A的横坐标为1,点D的纵坐标为-1,过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b的图像与x轴交于点C,求∠ACO的度数.(3)结合图像直接写出,当时,x的取值范围.22.(10分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?23.(10分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是;在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.24.(10分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.25.(12分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?26.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?
参考答案一、选择题(每题4分,共48分)1、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.2、B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、是轴对称图案,故本选项不符合题意;B、不是轴对称图案,故本选项符合题意;C、是轴对称图案,故本选项不符合题意;D、是轴对称图案,故本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.3、A【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【详解】解:如图,过点O作于点C,边接AO,,在中,,,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4、C【分析】先求出AB=1,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.【详解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四边形ABCD为正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置.∴点D的坐标为(﹣10,﹣3).故选:C.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,10°,90°,180°.5、C【分析】若二次函数的图像与x轴没有交点,则,解出关于m、n的不等式,再分别判断即可;【详解】解:与轴无交点,,,故A、B错误;同理:;故选C.【点睛】本题主要考查了抛物线与坐标轴的交点,掌握抛物线与坐标轴的交点是解题的关键.6、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.7、D【解析】由频数=数据总数×频率计算即可.【详解】解:∵摸到白色球的频率稳定在85%左右,∴口袋中白色球的频率为85%,故白球的个数为40×85%=34个,∴口袋中红色球的个数为40-34=6个故选D.【点睛】本题考查了利用频率估计概率,难度适中.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率来估计概率,这个固定的近似值就是这个事件的概率.8、A【解析】试题分析:连接OA,根据直线PA为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP-∠OAB=90°-60°=30°.考点:切线的性质9、C【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E'F'O,∴点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.10、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A.【点睛】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形.11、A【分析】根据相反数的意义求解即可.【详解】的相反数是-,故选:A.【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12、A【分析】由题意根据坐标的变化找出变化规律并依此规律结合2017=504×4+1即可得出点A2017的坐标进而得出横坐标.【详解】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0,).∵A2A3⊥A1A2,∴点A3的坐标为(-3,0).同理可得:A4(0,-3),A5(9,0),A6(0,9),…,∴A4n+1(()4n,0),A4n+2(0,()4n+1),A4n+3(-()4n+2,0),A4n+4(0,-()4n+3)(n为自然数).∵2017=504×4+1,∴A2017(()2016,0),即(31008,0),点A2017的横坐标为.故选:A.【点睛】本题考查规律型中点的坐标以及含30度角的直角三角形,根据点的变化找出变化规律是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【详解】由图象可得,
抛物线与x轴的一个交点为(1,0),对称轴是直线,
则抛物线与轴的另一个交点为(-3,0),
即当时,,此时方程的解是,
故答案为:.【点睛】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、①③④【分析】由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;
①成立,那么②不成立;
最小值为AB与底面重合,故n=AB,故③成立;
由上可知,影子的长度先增大后减小,④成立.
故答案为:①③④.15、1【分析】由概率=所求情况数与总情况数之比,根据随机摸出一个球是黑球的概率等于可得方程,继而求得答案.【详解】根据题意得:,
解得:.
故答案为:1.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16、【分析】先利用平行四边形的性质得AO=OC,再利用三角形中位线定理得出BC=2OE,然后根据AC=10cm,△OCE的周长为18cm,可求得BC+CD,即可求得的周长.【详解】∵的对角线交于O,点E为DC中点,∴EO是△DBC的中位线,AO=CO,CD=2CE,∴BC=2OE,∵AC=10cm,∴CO=5cm,∵△OCE的周长为18cm,∴EO+CE=18−5=13(cm),∴BC+CD=26cm,∴▱ABCD的周长是52cm.故答案为:52cm.【点睛】本题主要考查平行四边形的性质、三角形中位线定理,熟练掌握平行四边形的性质和三角形中位线定理是解答本题的关键.17、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.18、【分析】根据二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b的值.【详解】∵二次函数y=x2﹣bx=(x)2,当2≤x≤5时,函数y有最小值﹣1,∴当5时,x=5时取得最小值,52﹣5b=﹣1,得:b(舍去),当25时,x时取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),当2时,x=2时取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案为:.【点睛】本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共78分)19、(1)详见解析;(2)详见解析;【分析】(1)根据菱形的性质可得:,再根据相似三角形的判定即可证出,从而得出结论;(2)根据菱形的性质,可得DA=DC,从而得出∠DAC=∠DCA,可得只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,然后用尺规作图作∠CPQ=∠AEF或∠CPQ=∠AFE即可.【详解】解:(1)∵四边形是菱形,∴.∴.∴.(2)∵四边形是菱形∴DA=DC∴∠DAC=∠DCA∴只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,尺规作图如图所示:①作∠CPQ=∠AEF,步骤为:以点E为圆心,以任意长度为半径,作弧,交EA和EF于点G、H,以P为圆心,以相同长度为半径作弧,交CP于点M,以M为圆心,以GH的长为半径作弧,两弧交于点N,连接PN并延长,交AC于Q,就是所求作的三角形;②作∠CPQ=∠AFE,作法同上;或∴就是所求作的三角形(两种情况任选其一即可).【点睛】此题考查的是菱形的性质、相似三角形的判定及性质和尺规作图,掌握菱形的性质、相似三角形的判定定理及性质定理和用尺规作图作角等于已知角是解决此题的关键.20、(1)70;(2)画树状图见解析,该顾客所获得购物券的金额不低于50元的概率1【解析】试题分析:(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.试题解析:(1)则该顾客至多可得到购物券:50+20=70(元);(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:61221、(1),;(2)∠ACO=45°;(3)0<<1,<-2【分析】(1)由△AOB的面积为1,点A的横坐标为1,求点A的纵坐标,确定反比例函数解析式,利用反比例函数解析式求D点坐标,利用“两点法”求一次函数解析式;
(2)由一次函数解析式求C点坐标,再求AB、BC,在Rt△ABC中,求tan∠ACO的值,再求∠ACO的度数;
(3)当y1>y2时,y1的图象在y2的上面,由此求出x的取值范围.【详解】解(1)如图:S∆AOB=1,则则反比例函数的解析式:∴A(1,2),D(-2,-1)设一次函数的解析式为,则,解得:.∴一次函数的解析式为:(2)由直线y=x+1可知,C(-1,0),
则BC=OB+OC=2,AB=2,
所以,在Rt△ABC中,tan∠ACO==1,
故∠ACO=45°;
(3)由图象可知,当y1>y2时,x<-2或0<x<1.【点睛】此题考查反比例函数与一次函数的交点问题.解题关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式,利用解析式,形数结合解答题目的问题.22、(1)x的值为90;(2)每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【解析】(1)直接利用每件利润×销量=2400,进而得出一元二次方程解出答案即可;(2)利用每件利润×销量=利润,先用x表示出每件的利润和销量,进而得出利润关于x的二次函数解析式,再利用二次函数的性质求最值即可.【详解】解:(1)由题意可得:(x﹣60)[100﹣2(x﹣80)]=2400,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100(不合题意舍去),答:x的值为90;(2)设利润为w元,根据题意可得:w=(x﹣60)[100﹣2(x﹣80)]=﹣2x2+380x﹣15600=﹣2(x﹣95)2+2450,故每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是二次函数的实际应用,这是二次函数应用问题中的常见题型,解决问题的关键是根据题意中的数量关系求出函数解析式.23、(1)相同;(2)2;(3).【分析】(1)确定摸到红球的概率和摸到白球的概率,比较后即可得到答案;(2)根据频率即可计算得出n的值;(3)画树状图即可解答.【详解】(1)当n=1时,袋子中共3个球,∵摸到红球的概率为,摸到白球的概率为,∵摸到红球和摸到白球的可能性相同,故答案为:相同;(2)由题意得:,得n=2,故答案为:2;(3)树状图如下:根据树状图呈现的结果可得:(摸出的两个球颜色不同)【点睛】此题考查事件的概率,确定事件可能发生的所有情况机会应是均等的,某事件发生的次数,即可代入公式求出事件的概率.24、30°【分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江 城市乡村高考浙江作文题目
- 大气课程设计锅炉燃煤
- 2024全新酒店资产转让合同样本下载3篇
- 把课程设计做好英语
- 2024年无保险劳务派遣项目合作协议书3篇
- 武汉大学考古课程设计
- 学生会学期工作总结范文
- 2024年文具供货合同模板
- 招商方案模板集合5篇
- 少先队员的主要事迹(6篇)
- 浙江省温州市2023-2024学年九年级上学期期末数学试题(含解析)
- DL∕T 571-2014 电厂用磷酸酯抗燃油运行维护导则
- 2021电子商务淘宝天猫客服培训资料
- 中国法律史-第二次平时作业-国开-参考资料
- (高清版)JTGT D81-2017 公路交通安全设施设计细则
- 浙江省宁波市鄞州区2023-2024学年九年级上学期期末语文试题(含答案解析)
- 环酯红霉素的药物安全性评价及其临床前研究
- (正式版)SHT 3551-2024 石油化工仪表工程施工及验收规范
- MOOC 大学生劳动教育-南京大学 中国大学慕课答案
- 人教版五年级数学上册期末考试卷
- 铁路工程绿色设计标准
评论
0/150
提交评论