




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省大理市下关第一中学2024届数学高二下期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若(为虚数单位),则复数()A. B. C. D.2.用数学归纳法证明,从到,不等式左边需添加的项是()A. B.C. D.3.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法()A. B.C. D.4.设函数,满足,若函数存在零点,则下列一定错误的是()A. B. C. D.5.已知函数,若有最小值,则实数的取值范围是()A. B. C. D.6.若的展开式的各项系数和为32,则实数a的值为()A.-2 B.2 C.-1 D.17.已知,,,则().A. B. C. D.8.若,,,则实数,,的大小关系为()A. B. C. D.9.在复平面上,复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函数,则“”是“对任意,且,都有()成立”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.函数的图象大致是()A. B.C. D.12.的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知公比不为1的等比数列的首项,前项和为,若是与的等差中项,则__________.14.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,恰有1件一等品的概率为________.15.已知实数x,y满足条件,则z=x+3y的最小值是_______________.16.椭圆,参数的范围是)的两个焦点为、,以为边作正三角形,若椭圆恰好平分正三角形的另两条边,且,则等于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.18.(12分)已知函数.(1)画出函数的大致图象,并写出的值域;(2)若关于的不等式有解,求实数的取值范围.19.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,若直线的极坐标方程为,曲线的参数方程是(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)设点的直角坐标为,过的直线与直线平行,且与曲线交于、两点,若,求的值.20.(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数[50,59)[60,69)[70,79)[80,89)[90,100]甲班频数56441乙班频数13655(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?甲班乙班总计成绩优良成绩不优良总计现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.附:.临界值表21.(12分)已知函数.(1)若在上的最大值是最小值的2倍,解不等式;(2)若存在实数使得成立,求实数的取值范围.22.(10分)已知椭圆:的左、右焦点分别为,,离心率为,点是椭圆上的一个动点,且面积的最大值为.(1)求椭圆的方程;(2)设斜率不为零的直线与椭圆的另一个交点为,且的垂直平分线交轴于点,求直线的斜率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】由可得:,故选B.2、B【解题分析】分析:分析,时,左边起始项与终止项,比较差距,得结果.详解:时,左边为,时,左边为,所以左边需添加的项是,选B.点睛:研究到项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.3、A【解题分析】先分语文书有种,再分数学书有,故共有=,故选A.4、C【解题分析】分析:先根据确定符号取法,再根据零点存在定理确定与可能关系.详解:单调递增,因为,所以或,根据零点存在定理得或或,因此选C.点睛:确定零点往往需将零点存在定理与函数单调性结合起来应用,一个说明至少有一个,一个说明至多有一个,两者结合就能确定零点的个数.5、C【解题分析】
求出原函数的导函数,函数有最小值,则导函数在小于0有解,于是转化为斜率问题求解得到答案.【题目详解】根据题意,得,若有最小值,即在上先递减再递增,即在先小于0,再大于0,令,得:,令,只需的斜率大于过的的切线的斜率即可,设切点为,则切线方程为:,将代入切线方程得:,故切点为,切线的斜率为1,只需即可,解得:,故答案为C.【题目点拨】本题主要考查函数的最值问题,导函数的几何意义,意在考查学生的转化能力,分析能力及计算能力,难度较大.6、D【解题分析】
根据题意,用赋值法,在中,令可得,解可得a的值,即可得答案.【题目详解】根据题意,的展开式的各项系数和为32,令可得:,解可得:,故选:D.【题目点拨】本题考查二项式定理的应用,注意特殊值的应用.7、C【解题分析】试题分析:因为所以选C.考点:比较大小8、A【解题分析】
利用幂指对函数的单调性,比较大小即可.【题目详解】解:,,,∴,故选:A【题目点拨】本题考查了指对函数的单调性及特殊点,考查函数思想,属于基础题.9、D【解题分析】
直接把给出的复数写出代数形式,得到对应的点的坐标,则答案可求.【题目详解】由题意,复数,所以复数对应的点的坐标为位于第一象限,故选A.【题目点拨】本题主要考查了复数的代数表示,以及复数的几何意义的应用,其中解答中熟记复数的代数形式和复数的表示是解答本题的关键,着重考查了推理与运算能力,属于基础题.10、A【解题分析】对任意,且,都有成立,则函数在上单调递增,在上恒成立,即在上恒成立,,由函数的单调性可得:在上,即,原问题转化为考查“”是“”的关系,很明显可得:“”是“对任意,且,都有成立”充分不必要条件.本题选择A选项.11、D【解题分析】
先分析函数奇偶性,再分析函数是否有零点即可.【题目详解】因为,故为奇函数,排除A,B.又当时,故有零点,排除C.故选D【题目点拨】本题主要考查函数图像的判定方法,一般考虑奇偶性与函数的零点或者函数的正负等,属于基础题型.12、C【解题分析】分析:直接利用微积分基本定理求解即可.详解:,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、2017【解题分析】由题设可得,又,故,则,应填答案.14、【解题分析】
利用古典概型的概率计算公式计算即可.【题目详解】从10件产品中任取3件共有种不同取法,其中恰有1件一等品共有种不同取法,由古典概型的概率计算公式知,从中随机选出3件产品,恰有1件一等品的概率为.故答案为:【题目点拨】本题考查古典概型的概率计算,考查学生的运算能力,是一道基础题.15、-5【解题分析】作可行域,则直线z=x+3y过点A(1,-2)取最小值-5点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16、【解题分析】试题分析:设P为椭圆平分正三角形的边的一个点,则为一个锐角为直角三角形,因为斜边长,所以另两条直角边长为由椭圆定义有考点:椭圆定义三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【题目详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以【题目点拨】本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.18、(1)作图见解析;值域为(2)【解题分析】
(1)将转化为分段函数,即可画出函数图象;(2)根据(1)求得分段函数,可得分段函数表达式,画出其函数图象,求得,即可求得实数的取值范围.【题目详解】(1)∵,∴的图象的图像如图,的值域为.根据图象可得:的值域为.(2)由(1)得,画出其函数图象:根据其分段函数图象特征可得:,由关于的不等式有解等价于,即.【题目点拨】本题主要考查了求分段函数的值域和根据不等式有解求参数范围问题,解题关键是掌握通过函数图象求值域的方法和根据不等式有解求参数的解法,考查了分析能力和计算能力,属于中档题.19、(1)直线的直角坐标方程为,曲线的普通方程为;(2).【解题分析】
(1)利用两角和的余弦公式以及可将的极坐标方程转化为普通方程,在曲线的参数方程中消去参数可得出曲线的普通方程;(2)求出直线的倾斜角为,可得出直线的参数方程为(为参数),并设点、的参数分别为、,将直线的参数方程与曲线普通方程联立,列出韦达定理,由,代入韦达定理可求出的值.【题目详解】(1)因为,所以,由,,得,即直线的直角坐标方程为;因为消去,得,所以曲线的普通方程为;(2)因为点的直角坐标为,过的直线斜率为,可设直线的参数方程为(为参数),设、两点对应的参数分别为、,将参数方程代入,得,则,.所以,解得.【题目点拨】本题考查参数方程、极坐标与普通方程的互化,同时也考查了直线参数方程的几何意义的应用,求解时可将直线的参数方程与曲线的普通方程联立,结合韦达定理进行计算,考查运算求解能力,属于中等题.20、(1)在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)见解析【解题分析】
(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.【题目详解】解:(1)根据2×2列联表中的数据,得的观测值为,在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)由表可知在8人中成绩不优良的人数为,则的可能取值为0,1,2,1.;;;.的分布列为:所以.【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.21、(Ⅰ);(Ⅱ).【解题分析】分析:(1)根据在上的最大值是最小值的2倍求出a的值,再解不等式.(2)先分离参数得,再求右边式子的最小值,得到a的取值范围.详解:(1)∵,∴,,∴,解得,不等式,即,解得或,故不等式的解集为.(2)由,得,令,问题转化为,又故,则,所以实数的取值范围为.点睛:(1)本题主要考查不等式的解法和求绝对值不等式的最值,意在考查学生对这些基础知识的掌握能力.(2)本题易错,得到,问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学数字化学习推广计划
- 品牌咨询行业人才需求分析-全面剖析
- 区块链技术在知识产权管理中的应用研究-全面剖析
- 几何直观教学研究-全面剖析
- 学校橡皮泥艺术节活动计划
- 水资源规划与管理-全面剖析
- 2024年度北京市护师类之护师(初级)能力测试试卷B卷附答案
- 案例教学与教育伦理-全面剖析
- 仓储信息化建设路径-全面剖析
- 弹性伸缩策略在边缘计算中的应用-全面剖析
- 诗词接龙完整版本
- 上海市2024年中考英语试题及答案
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 湖北省黄冈八模2025届高三第一次模拟考试数学试卷含解析
- 2024-2030年中国建筑垃圾处理行业发展分析及投资规划研究报告
- DB11∕T 1842-2021 市政基础设施工程门式和桥式起重机安全应用技术规程
- 2025年湖北省武汉市高考数学模拟试卷附答案解析
- 部编版五年级语文上册快乐读书吧测试题及答案
- 心肺复苏考试题及答案
- TSG ZF001-2006《安全阀安全技术监察规程》
- 临床试验数据管理
评论
0/150
提交评论