吉林省博文中学2024届数学高二下期末复习检测模拟试题含解析_第1页
吉林省博文中学2024届数学高二下期末复习检测模拟试题含解析_第2页
吉林省博文中学2024届数学高二下期末复习检测模拟试题含解析_第3页
吉林省博文中学2024届数学高二下期末复习检测模拟试题含解析_第4页
吉林省博文中学2024届数学高二下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省博文中学2024届数学高二下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.五名应届毕业生报考三所高校,每人报且仅报一所院校,则不同的报名方法的种数是()A. B. C. D.2.复数在复平面内对应的点在()A.实轴上 B.虚轴上 C.第一象限 D.第二象限3.如果,那么的值是()A. B. C. D.4.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知向量与向量的模均为2,若,则它们的夹角是()A. B. C. D.6.在的展开式中,含项的系数为()A.45 B.55 C.120 D.1657.已知是等差数列的前n项和,且,则的通项公式可能是()A. B. C. D.8.设i是虚数单位,则复数i3A.-i B.i C.1 D.-19.设函数,记,若函数至少存在一个零点,则实数的取值范围是()A. B.C. D.10.设,若是的最小值,则的取值范围是()A. B. C. D.11.若x∈0,2π,则不等式x+A.0,π B.π4,5π412.已知函数,,若在上有且只有一个零点,则的范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知AB是球O的直径,C,D为球面上两动点,AB⊥CD,若四面体ABCD体积的最大值为9,则球O的表面积为__.14.函数的图像在处的切线方程为_______.15.在正方体中,为的中点,为底面的中心,为棱上任意一点,则直线与直线所成的角是____________.16.已知函数为的极值点,则关于的不等式的解集为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm³的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度.(精确到0.1cm)18.(12分)已知函数,(1)求的图象在处的切线方程并求函数的单调区间;(2)求证:.19.(12分)已知函数(1)当为何值时,轴为曲线的切线;(2)若存在(是自然对数的底数),使不等式成立,求实数的取值范围.20.(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab21.(12分)某学校研究性学习小组对该校高二学生视力情况进行调查,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:年级名次是否近视1~50951~1000近视4132不近视918(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(2)在(1)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求的分布列和数学期望.0.100.050.0250.0100.0052.7063.8415.0246.6357.879附:22.(10分)设向量,,,记函数.(1)求函数的单调递增区间;(2)在锐角中,角,,的对边分别为,,,若,,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由题意,每个人可以报任何一所院校,则结合乘法原理可得:不同的报名方法的种数是.本题选择D选项.2、B【解题分析】

利用复数的乘法法则将复数表示为一般形式,即可得出复数在复平面内对应的点的位置.【题目详解】,对应的点的坐标为,所对应的点在虚轴上,故选B.【题目点拨】本题考查复数对应的点,考查复数的乘法法则,关于复数问题,一般要利用复数的四则运算法则将复数表示为一般形式进行解答,考查计算能力,属于基础题.3、D【解题分析】

由诱导公式,可求得的值,再根据诱导公式化简即可.【题目详解】根据诱导公式,所以而所以选D【题目点拨】本题考查了诱导公式在三角函数式化简中的应用,属于基础题.4、C【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】,,复数对应的点的坐标为,,在第三象限.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.5、A【解题分析】

由题意结合数量积的运算法则可得,据此确定其夹角即可.【题目详解】∵,∴,∴,故选A.【题目点拨】本题主要考查向量夹角的计算,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.6、D【解题分析】分析:由题意可得展开式中含项的系数为,再利用二项式系数的性质化为,从而得到答案.详解:的展开式中含项的系数为故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.7、D【解题分析】

由等差数列的求和公式,转化为,故,分析即得解【题目详解】由题意,等差数列,且可得故所以当时,则的通项公式可能是故选:D【题目点拨】本题考查了等差数列的通项公式和求和公式,考查了学生概念理解,数学运算的能力,属于中档题.8、C【解题分析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果.详解:i3∴复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.9、A【解题分析】试题分析:函数定义域是,,,设,则,设,则,,易知,即也即在上恒成立,所以在上单调递增,又,因此是的唯一零点,当时,,当时,,所以在上递减,在上递增,,函数至少有一个零点,则,.故选B.考点:函数的零点,用导数研究函数的性质.【名师点睛】本题考查函数的零点的知识,考查导数的综合应用,题意只要函数的最小值不大于0,因此要确定的正负与零点,又要对求导,得,此时再研究其分子,于是又一次求导,最终确定出函数的最小值,本题解题时多次求导,考查了学生的分析问题与解决问题的能力,难度较大.10、B【解题分析】

当时,可求得此时;当时,根据二次函数性质可知,若不合题意;若,此时;根据是在上的最小值可知,从而构造不等式求得结果.【题目详解】当时,(当且仅当时取等号)当时,当时,在上的最小值为,不合题意当时,在上单调递减是在上的最小值且本题正确选项:【题目点拨】本题考查根据分段函数的最值求解参数范围的问题,关键是能够确定每一段区间内最值取得的点,从而确定最小值,通过每段最小值之间的大小关系可构造不等式求得结果.11、D【解题分析】

由绝对值三角不等式的性质得出xsinx<0,由0<x<2π,得出【题目详解】因为x+sinx又x∈(0,2π),所以sinx<0,x∈(π,2π),故选:D【题目点拨】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题。12、B【解题分析】

将问题转化为在有且仅有一个根,考虑函数,的单调性即可得解.【题目详解】由题,所以不是函数的零点;当,有且只有一个零点,即在有且仅有一个根,即在有且仅有一个根,考虑函数,由得:,由得:所以函数在单调递减,单调递增,,,,,要使在有且仅有一个根,即或则的范围是故选:B【题目点拨】此题考查根据函数零点求参数的取值范围,关键在于等价转化,利用函数单调性解决问题,常用分离参数处理问题.二、填空题:本题共4小题,每小题5分,共20分。13、36π【解题分析】

由题意,为等腰直角三角形,高为球O的半径时,四面体ABCD的体积最大,利用四面体ABCD体积的最大值为9,求出R,即可求出球O的表面积.【题目详解】由题意,为等腰直角三角形,高为球O的半径时,四面体ABCD的体积最大,最大值为,,球O的表面积为.故答案为:36π.【题目点拨】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体ABCD的体积的最大值,是解答的关键.14、【解题分析】

对函数求导,把分别代入原函数与导数中分别求出切点坐标与切线斜率,进而求得切线方程。【题目详解】,函数的图像在处的切线方程为,即.【题目点拨】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。15、90°【解题分析】

直线在平面内的射影与垂直.【题目详解】如图,分别是的中点,连接,易知在上,,又在正方形中,是的中点,∴(可通过证得),又正方体中,而,∴,,∴,∴直线与直线所成的角是90°.故答案为90°.【题目点拨】本题考查两异面直线所成的角,由于它们所成的角为90°,因此可通过证明它们相互垂直得到,这又可通过证明线面垂直得出结论,当然也可用三垂线定理证得.16、【解题分析】

首先利用为的极值点求出参数,然后利用符号法则解分式不等式即可。【题目详解】,由题意,,经检验,当时,为的极值点.所以.或,的解集为.【题目点拨】本题主要考查导数在函数中的应用,以及分式不等式的解法,意在考查学生的数学运算能力。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)一沙时为1986秒;(2)沙堆高度约为2.4cm.【解题分析】

(1)开始时,沙漏上部分圆锥中的细沙的高为,底面半径为39.71(秒)所以,沙全部漏入下部约需1986秒(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为锥形沙堆的高度约为2.4cm.18、(1)切线方程为:,单调增区间为,单调减区间是(2)见解析【解题分析】试题分析:(1)由函数的导函数可得切线的斜率为2,据此可得切线方程为:,单调增区间为,单调减区间是;(2)构造新函数,结合函数的性质即可证得题中的结论.试题解析:(1),∴,所以切线方程为:单调增区间为,单调减区间是(2)设,.∵在上单调递增,且,.∴存在唯一的零点,使得,即∴在上单调递减,在单调递增,∴=,又,∴上式等号不成立,∴,即19、(1)(2)【解题分析】

(1)设曲线与轴相切于点,利用导数的几何意义,列出方程组,即可求解;(2)把不等式成立,转化为,构造函数,利用导数求得函数的单调性与最值,即可求解.【题目详解】(1)设曲线与轴相切于点,则,,即,解得,即当时,轴为曲线的切线.(2)由题意知,即,设,则,当时,,此时单调递减;当时,,此时单调递增.存在,使成立,等价于,即,又,,故,所以.【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1).(2)分布列见解析,.【解题分析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为,所以,即.①又,得.②联立①,②解得,.(2),依题意知,故,,,.故的概率分布为的数学期望为.点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.21、(1)在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系(2)见解析,数学期望1【解题分析】

(1)题设数据代入即得解.(2)服从超几何分布,利用概率公式可得解.【题目详解】解:(1)因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系(2)根据题意9人中年级名次在名和名分别有3人和6人.可取0,1,2,3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论