![2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view11/M02/2E/3E/wKhkGWW9M-yAUOARAAHlA07CTJ4488.jpg)
![2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view11/M02/2E/3E/wKhkGWW9M-yAUOARAAHlA07CTJ44882.jpg)
![2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view11/M02/2E/3E/wKhkGWW9M-yAUOARAAHlA07CTJ44883.jpg)
![2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view11/M02/2E/3E/wKhkGWW9M-yAUOARAAHlA07CTJ44884.jpg)
![2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view11/M02/2E/3E/wKhkGWW9M-yAUOARAAHlA07CTJ44885.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感市八所重点高中教学协作体数学高二下期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)().A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.93.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数4.已知变量x,y之间的线性回归方程为,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是()x681012y6m32A.变量x,y之间呈现负相关关系B.可以预测,当x=20时,y=﹣3.7C.m=4D.该回归直线必过点(9,4)5.函数在点处的切线方程为()A. B. C. D.6.已知中,,则满足此条件的三角形的个数是()A.0 B.1 C.2 D.无数个7.将点的极坐标化成直角坐标是(
)A. B. C. D.8.若复数是纯虚数,则的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.10.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应A.从东边上山 B.从西边上山 C.从南边上山 D.从北边上山11.已知集合,,,则()A. B. C. D.12.甲、乙两支球队进行比赛,预定先胜3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在一个如图所示的6个区域栽种观赏植物,要求同一块区域中种同一种植物,相邻的两块区域中种不同的植物.现有4种不同的植物可供选择,则不同的栽种方案的总数为____.14.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率是______.15.用数学归纳法证明,则当时左端应在的基础上加上的项为_______.16.在的展开式中,常数项为______.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.18.(12分)已知函数的图象在点处的切线方程为.(1)求函数的解析式;(2)求函数在区间上的最大值.19.(12分)已知函数.(1)求函数的定义域并判断奇偶性;(2)若,求实数m的取值范围.20.(12分)假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:(1)求关于的线性回归方程;(2)估计使用年限为10年时所支出的年平均维修费用是多少?参考公式:21.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径.22.(10分)函数(为实数).(1)若,求证:函数在上是增函数;(2)求函数在上的最小值及相应的的值;(3)若存在,使得成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:所给图象是导函数图象,只需要找出与轴交点,才能找出原函数的单调区间,从而找出极值点;由本题图中可见与有四个交点,其中两个极大值,两极小值.考点:函数的极值.2、A【解题分析】
题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【题目详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【题目点拨】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3、D【解题分析】
将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【题目点拨】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.4、C【解题分析】
根据回归直线方程的性质,以及应用,对选项进行逐一分析,即可进行选择.【题目详解】对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,故负相关.对于B:当x=20时,代入可得y=﹣3.7对于C:根据表中数据:9.可得4.即,解得:m=5.对于D:由线性回归方程一定过(),即(9,4).故选:C.【题目点拨】本题考查线性回归直线方程的性质,以及回归直线方程的应用,属综合基础题.5、D【解题分析】分析:由题意,求得,得到,利用直线的点斜式方程,即可求解切线的方程;详解:由题意,函数,则,所以,即切线的斜率为,又,所以切线过点,所以切线的方程为,即,故选D.点睛:本题主要考查了利用导数的几何意义求解切线的方程问题,其中熟记导数的几何意义的应用是解答的关键,着重考查了推理与运算能力.6、C【解题分析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.7、A【解题分析】本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A8、C【解题分析】
由纯虚数的定义和三角恒等式可求得,根据二倍角公式求得;根据复数的几何意义可求得结果.【题目详解】为纯虚数,,即,,,,对应点的坐标为,位于第二象限.则的共轭复数在复平面内对应的点位于第三象限故选:.【题目点拨】本题考查复数对应点的坐标的问题的求解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.9、D【解题分析】
由题意知该程序的作用是求样本的方差,由方差公式可得.【题目详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D【题目点拨】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.10、D【解题分析】从东边上山共种;从西边上山共种;从南边上山共种;从北边上山共种;所以应从北边上山.故选D.11、D【解题分析】
按照补集、交集的定义,即可求解.【题目详解】,,.
故选:D.【题目点拨】本题考查集合的混合计算,属于基础题.12、B【解题分析】若是3:2获胜,那么第五局甲胜,前四局2:2,所以概率为,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先种B、E两块,再种A、D,而种C、F与种A、D情况一样,根据分类与分步计数原理可求.【题目详解】先种B、E两块,共种方法,再种A、D,分A、E相同与不同,共种方法,同理种C、F共有7种方法,总共方法数为【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.本题先种B、E两块,让问题变得更简单.14、【解题分析】
设此射手每次射击命中的概率为,由独立事件的概率与对立事件的概率可得,射击四次全都没有命中的概率为,解方程可求出的值.【题目详解】设此射手每次射击命中的概率为,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为.则,可解得,故答案为.【题目点拨】本题主要考查独立事件同时发生的概率公式以及对立事件的概率公式,意在考查灵活应用所学知识解答问题的能力,属于中档题.15、【解题分析】
分n=k和n=k+1写出等式左边的项,对比可得增加的项。【题目详解】当n=k时,左边是,当时左边是,所以增加的项为,填。【题目点拨】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.16、57【解题分析】
先求出的展开式中的常数项和的系数,再求的常数项.【题目详解】由题得的通项为,令r=0得的常数项为,令-r=-2,即r=2,得的的系数为.所以的常数项为1+2×28=57.故答案为:57【题目点拨】本题主要考查二项式定理,考查二项式展开式指定项的求法,意在考查学生对这些知识的理解掌握水平和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【题目详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,又∵,∴为等腰直角三角形,∴,∴当时,四边形面积有最大值,最大值为.【题目点拨】本题主要考查余弦定理解三角形、诱导公式、三角形面积公式和利用三角函数求最值,考查学生的分析转化能力和计算能力,属于中档题.18、(1);(2)最大值为.【解题分析】
(1)将点代入直线,得出,再由解出、的值,可得出函数的解析式;(2)利用导数求出函数在区间上的极值,再与端点函数值比较大小,可得出函数在区间上的最大值.【题目详解】(1),,将点点代入直线,得,得,所以,解得,因此,;(2),.由得或,由得.函数在上单调递减,在上单调递增,当时,函数在处取得极小值,而,,函数在区间上的最大值为.【题目点拨】本题考查了导数的几何意义,同时也考查了利用导数求函数的最值,意在对导数知识点以及应用的考查,属于中等题.19、(1)见解析;(2)或.【解题分析】
(1)由,求得x的范围,可得函数y=f(x)定义域,由函数y=f(x)的定义域关于原点对称,且满足f(﹣x)=f(x),可得函数y=f(x)为偶函数;(2)化简函数f(x)的解析式为所,结合函数的单调性可得,不等式等价于,由此求得m的范围.【题目详解】(1)由得,所以的定义域为,又因为,所以偶函数.(2)因为所以是[0,3)上的减函数,又是偶函数.故解得或.【题目点拨】本题主要考查求函数的定义域,函数的奇偶性的判断,复合函数的单调性,属于中档题.20、(1);(2)万元【解题分析】
(1)先求出样本中心点及代入公式求得,再将代入回归直线求得的值,可得线性回归方程;(2)在(1)中求得的线性回归方程中,取x=10,求得y值得答案.【题目详解】(1)由题表数据可得,由公式可得,即回归方程是.(2)由(1)可得,当时,;即,使用年限为10年时所支出的年平均维修费用是万元.【题目点拨】本题考查线性回归方程,考查计算能力,是基础题.21、(1)6;(2)13.【解题分析】
(1)将直线参数方程代入圆的直角坐标方程,利用求解得到结果;(2)写出的普通方程并假设圆的直角坐标方程,利用弦长为建立与的关系,再结合圆心到直线距离公式得到方程,解方程求得,即为圆的半径.【题目详解】(1)由,得将代入,得设两点对应的参数分别为,则故(2)直线的普通方程为设圆的方程为圆心到直线的距离为因为,所以解得:或(舍)则圆的半径为【题目点拨】本题考查直线参数方程中参数的几何意义、极坐标与直角坐标的互化、参数方程化普通方程.解决直线参数方程问题中距离之和或积的关键,是明确直线参数方程标准形式中的参数的几何意义,将距离问题转化为韦达定理的形式.22、(1)函数在上是增函数;(2)见解析;(3).【解题分析】试题分析:(1)当时,在(0,+∞)上恒成立,故函数在(1,+∞)上是增函数;(2)求导),当x∈[1,e]时,.分①,②,③,三种情况得到函数f(x)在[1,e]上是单调性,进而得到[f(x)]min;(3)由题意可化简得到,令,利用导数判断其单调性求出最小值为.试题解析:(1)当时,,其定义域为,,当时,恒成立,故函数在上是增函数.(2),当时,,①若,在上有(仅当,时,),故函数在上是增函数,此时;②若,由,得,当时,有,此时在区间上是减函数;当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明2025年云南昆明市生态环境局所属事业单位引进高层次人才笔试历年参考题库附带答案详解
- 2025年中国双人翻转座椅骨架市场调查研究报告
- 广西2025年广西合浦儒艮国家级自然保护区管理中心招聘笔试历年参考题库附带答案详解
- 2025至2031年中国铝合金丝编织管行业投资前景及策略咨询研究报告
- 2025至2031年中国精密交流脉冲焊接机行业投资前景及策略咨询研究报告
- 2025至2031年中国玻璃卫浴产品行业投资前景及策略咨询研究报告
- 2025至2031年中国汽车前大灯镜片行业投资前景及策略咨询研究报告
- 惠州2025年广东惠州龙门县市容环境卫生事务中心招聘编外环卫工人14人笔试历年参考题库附带答案详解
- 2025年平移大门驱动系统项目可行性研究报告
- 2025年合金钢衬项目可行性研究报告
- 上海市2024年中考英语试题及答案
- 2025中国移动安徽分公司春季社会招聘高频重点提升(共500题)附带答案详解
- 砂光机培训课件
- 七年级英语下学期开学考试(深圳专用)-2022-2023学年七年级英语下册单元重难点易错题精练(牛津深圳版)
- 2025江苏省全日制劳动合同书范本
- 北京版(一起)英语二年级下册单词默写表
- 中建抹灰工程专项施工方案
- 地方融资平台债务和政府中长期支出事项监测平台操作手册-单位
- 放射科护理常规
- 洗刷书包(课件)三年级上册劳动
- 儒释道文化秒解
评论
0/150
提交评论