2024届云南省玉溪市华宁二中数学高二下期末达标检测试题含解析_第1页
2024届云南省玉溪市华宁二中数学高二下期末达标检测试题含解析_第2页
2024届云南省玉溪市华宁二中数学高二下期末达标检测试题含解析_第3页
2024届云南省玉溪市华宁二中数学高二下期末达标检测试题含解析_第4页
2024届云南省玉溪市华宁二中数学高二下期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省玉溪市华宁二中数学高二下期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-23.若,,如果与为共线向量,则()A., B.,C., D.,4.下列说法中:相关系数用来衡量两个变量之间线性关系的强弱,越接近于1,相关性越弱;回归直线过样本点中心;相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好.两个模型中残差平方和越小的模型拟合的效果越好.正确的个数是()A.0 B.1 C.2 D.35.甲、乙两名游客来龙岩旅游,计划分别从“古田会址”、“冠豸山”、“龙崆洞”、“永福樱花园”四个旅游景点中任意选取3个景点参观游览,则两人选取的景点中有且仅有两个景点相同的概率为()A. B. C. D.6.在中,角的对边分别是,若,则()A.5 B. C.4 D.37.椭圆的左、右焦点分别为,弦过,若的内切圆的周长为,两点的坐标分别为,,则()A. B. C. D.8.在中,为锐角,,则的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.以上都不对9.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960 B.0.864 C.0.720 D.0.57610.一物体的运动方程为(为常数),则该物体在时刻的瞬时速度为()A. B. C. D.11.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.(y≠0)12.从中不放回地依次取个数,事件表示“第次取到的是奇数”,事件表示“第次取到的是奇数”,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的左,右焦点分别为,,焦距为,是椭圆上一点(不在坐标轴上),是的平分线与轴的交点,若,则椭圆离心率的范围是___________.14.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为____.15.已知函数的导函数为,且满足,则__________.16.设满足约束条件,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市年与年这两年销售量前名的五个奶粉的销量(单位:罐),绘制出如下的管状图:(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名(由高到低,不用说明理由);(2)已知该超市年奶粉的销量为(单位:罐),以,,这年销量得出销量关于年份的线性回归方程为(,,年对应的年份分别取),求此线性回归方程并据此预测年该超市奶粉的销量.相关公式:.18.(12分)已知.猜想的表达式并用数学归纳法证明你的结论.19.(12分)已知椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的左、右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:恒为定值.20.(12分)在中,内角的对边分别为.已知(1)求的值(2)若,求的面积.21.(12分)在平面直角坐标系中,椭圆,右焦点为.(1)若其长半轴长为,焦距为,求其标准方程.(2)证明该椭圆上一动点到点的距离的最大值是.22.(10分)如图,在四边形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

首先判断充分性可代特殊值,然后再判断必要性.【题目详解】当时,令,此时,所以不是充分条件;反过来,当时,可得,且,即,所以是必要条件,是的必要不充分条件,故选B.【题目点拨】本题考查必要不充分条件,根据必要不充分条件的判断方法判断即可.2、B【解题分析】

根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【题目详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【题目点拨】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.3、B【解题分析】

利用向量共线的充要条件即可求出.【题目详解】解:与为共线向量,存在实数使得,,解得.故选:.【题目点拨】本题考查空间向量共线定理的应用,属于基础题.4、D【解题分析】

根据线性回归方程的性质,结合相关系数、相关指数及残差的意义即可判断选项.【题目详解】对于,相关系数用来衡量两个变量之间线性关系的强弱,越接近于1,相关性越强,所以错误;对于,根据线性回归方程的性质,可知回归直线过样本点中心,所以正确;对于,相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好,所以正确;对于,根据残差意义可知,两个模型中残差平方和越小的模型拟合的效果越好,所以正确;综上可知,正确的为,故选:D.【题目点拨】本题考查了线性回归方程的性质,相关系数与相关指数的性质,属于基础题.5、A【解题分析】

先求出两人从四个旅游景点中任意选取3个景点的所有选法,再求出两人选取的景点中有且仅有两个景点相同的选法,然后可求出对应概率.【题目详解】甲、乙两人从四个旅游景点中任意选取3个景点参观游览,总共有种选法,两人选取的景点中有且仅有两个景点相同,总共有,则两人选取的景点中有且仅有两个景点相同的概率为.故选A.【题目点拨】本题考查了概率的求法,考查了排列组合等知识,考查了计算能力,属于中档题.6、D【解题分析】

已知两边及夹角,可利用余弦定理求出.【题目详解】由余弦定理可得:,解得.故选D.【题目点拨】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.7、A【解题分析】

设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.可得==•|F1F1|,即可得出.【题目详解】由椭圆=1,可得a=5,b=4,c==2.如图所示,设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.则==•|F1F1|,∴4a=|y1﹣y1|×1c,∴|y1﹣y1|==.故选C.【题目点拨】本题考查了椭圆的标准方程定义及其性质、三角形内切圆的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.8、A【解题分析】分析:由正弦定理化简并结合选项即可得到答案.详解:,则由正弦定理可得:,即,则当时,符合题意,故选:A.点睛:(1)三角形的形状按边分类主要有:等腰三角形,等边三角形等;按角分类主要有:直角三角形,锐角三角形,钝角三角形等.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2)边角转化的工具主要是正弦定理和余弦定理.9、B【解题分析】A1、A2同时不能工作的概率为0.2×0.2=0.04,所以A1、A2至少有一个正常工作的概率为1-0.04=0.96,所以系统正常工作的概率为0.9×0.96=0.864.故选B.考点:相互独立事件的概率.10、B【解题分析】

对运动方程为求导,代入,计算得到答案.【题目详解】对运动方程为求导代入故答案选B【题目点拨】本题考查了导数的意义,意在考查学生的应用能力.11、D【解题分析】所以定点的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,选D.12、D【解题分析】试题分析:由题意,,∴,故选D.考点:条件概率与独立事件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由已知结合三角形内角平分线定理可得|PF1|=2|PF2|,再由椭圆定义可得|PF2|,得到a﹣c,从而得到e,再与椭圆离心率的范围取交集得答案.【题目详解】∵,∴,,∵是的角平分线,∴,则,由,得,由,可得,由,∴椭圆离心率的范围是.故答案为:【题目点拨】本题考查椭圆的简单性质,训练了角平分线定理的应用及椭圆定义的应用,是中档题.14、【解题分析】试题分析:总的数对有,满足条件的数对有3个,故概率为考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式15、-1【解题分析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.16、【解题分析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)前五强排名为:,,,,;(2)回归直线为:;预测年该超市奶粉的销量为罐.【解题分析】

(1)根据管状图,可求得五种奶粉两年的销量和,从而按照从多到少进行排列即可;(2)根据已知数据,利用最小二乘法求得回归直线;代入,即可求得预测值.【题目详解】(1)两年销量:;两年销量:;两年销量:;两年销量:;两年销量:前五强排名为:,,,,(2)由题意得:,;;,回归直线为:当时,预测年该超市奶粉的销量为:罐【题目点拨】本题考查统计图表的读取、最小二乘法求解回归直线、根据回归直线求解预估值的问题,考查运算和求解能力.18、证明见解析【解题分析】

首先计算,猜想,再用数学归纳法证明.【题目详解】猜想,下面用数学归纳法证明:①时,猜想成立;②假设时猜想成立,即则时,由及得又=,时猜想成立.由①②知.【题目点拨】本题考查了数学归纳法,意在考查学生的归纳推理能力和计算能力.19、(Ⅰ).(Ⅱ)为定值.证明见解析.【解题分析】本试题主要是考出了椭圆方程的求解,椭圆的几何性质,直线与椭圆的位置关系的运用的综合考查,体现了运用代数的方法解决解析几何的本质的运用.(1)首先根据题意的几何性质来表示得到关于a,b,c的关系式,从而得到其椭圆的方程.(2设出直线方程,设点P的坐标,点斜式得到AP的方程,然后联立方程组,可知借助于韦达定理表示出长度,进而证明为定值.(Ⅰ)解:由题意可知,,,解得.…………4分所以椭圆的方程为.…………5分(Ⅱ)证明:由(Ⅰ)可知,,.设,依题意,于是直线的方程为,令,则.即.…………7分又直线的方程为,令,则,即.…………9分…………11分又在上,所以,即,代入上式,得,所以为定值.…………12分20、(1)(2)【解题分析】

(1)正弦定理得边化角整理可得,化简即得答案.(2)由(1)知,结合题意由余弦定理可解得,,从而计算出面积.【题目详解】(1)由正弦定理得,所以即即有,即所以(2)由(1)知,即,又因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论