2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题含解析_第1页
2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题含解析_第2页
2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题含解析_第3页
2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题含解析_第4页
2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昆明市呈贡区第一中学高二数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为A.13万件 B.11万件C.9万件 D.7万件2.复数的虚部是()A.1 B.﹣i C.i D.﹣13.已知随机变量服从正态分布,若,则()A. B. C. D.4.,若,则的值等于()A.B.C.D.5.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55276.已知函数在恰有两个零点,则实数的取值范围是()A. B.C. D.7.展开式中的系数为()A.15 B.20 C.30 D.358.已知随机变量服从正态分布,且,则()A.0.4 B.0.5 C.0.6 D.0.79.将3颗相同的红色小球和2颗相同的黑色小球装入四个不同盒子,每个盒子至少1颗,不同的分装方案种数为()A.40 B.28 C.24 D.1610.圆截直线所得的弦长为,则()A. B. C. D.211.若存在实数,,使不等式对一切正数都成立(其中为自然对数的底数),则实数的最小值是().A. B.4 C. D.212.若直线把圆分成面积相等的两部分,则当取得最大值时,坐标原点到直线的距离是()A.4B.C.2D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与直线互相垂直,则__________.14.在平面凸四边形ABCD中,,点M,N分别是边AD,BC的中点,且,若,,则的值为________.15.8人排成前后两排,前排3人后排5人,甲、乙在后排,且不相邻的排法有几种______16.执行如图所示的程序框图,则输出的i的值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且曲线在点处的切线与直线平行.(1)求函数的单调区间;(2)若关于的不等式恒成立,求实数的取值范围.18.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.19.(12分)设等差数列的前项和为,是等比数列,且,,,,是否存在,使,且?若存在,求的值.若不存在,则说明理由.20.(12分)已知函数.(1)若,求函数的极值;(2)当时,判断函数在区间上零点的个数.21.(12分)甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是34,乙猜对歌名的概率是23,丙猜对歌名的概率是(I)求该小组未能进入第二轮的概率;(Ⅱ)记乙猜歌曲的次数为随机变量ξ,求ξ的分布列和数学期望.22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为(1)设是参数,若,求直线的参数方程;(2)已知直线与曲线交于两点,设且,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】解:令导数y′=-x2+81>0,解得0<x<9;令导数y′=-x2+81<0,解得x>9,所以函数y=-x3+81x-234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,所以在x=9处取极大值,也是最大值,故选C.2、D【解题分析】

利用复数的运算法则、虚部的定义即可得出.【题目详解】解:∵复数,∴复数的虚部是﹣1,故选:D.【题目点拨】本题考查了复数的运算法则、虚部的定义,属于基础题.3、C【解题分析】分析:先根据正态分布得再求最后求得=0.34.详解:由正态分布曲线得所以所以=0.5-0.16=0.34.故答案为:C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.4、D【解题分析】试题分析:考点:函数求导数5、D【解题分析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。6、B【解题分析】

本题可转化为函数与的图象在上有两个交点,然后对求导并判断单调性,可确定的图象特征,即可求出实数的取值范围.【题目详解】由题意,可知在恰有两个解,即函数与的图象在上有两个交点,令,则,当可得,故时,;时,.即在上单调递减,在上单调递增,,,,因为,所以当时,函数与的图象在上有两个交点,即时,函数在恰有两个零点.故选B.【题目点拨】已知函数有零点(方程有根)求参数值常用的方法:(1)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(2)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.7、C【解题分析】

利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得的系数.【题目详解】根据二项式定理展开式通项为则展开式的通项为则展开式中的项为则展开式中的系数为故选:C【题目点拨】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.8、A【解题分析】∵P(x≤6)=0.9,∴P(x>6)=1﹣0.9=0.1.∴P(x<0)=P(x>6)=0.1,∴P(0<x<3)=0.5﹣P(x<0)=0.2.故答案为A.9、B【解题分析】分析:分两类讨论,其中一类是两个黑球放在一个盒子中的,其中一类是两个黑球不在一个盒子中的,最后把两种情况的结果相加即得不同的分装方案种数.详解:分两种情况讨论,一类是两个黑球放在一个盒子中的有种,一类是两个黑球不放在一个盒子中的:如果一个黑球和一个白球在一起,则有种方法;如果两个黑球不在一个盒子里,两个白球在一个盒子里,则有种方法.故不同的分装方案种数为4+12+12=28.故答案为:B.点睛:(1)本题主要考查排列组合综合应用题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题时,要注意审题,黑球是一样的,红球是一样的,否则容易出错.10、A【解题分析】

将圆的方程化为标准方程,结合垂径定理及圆心到直线的距离,即可求得的值.【题目详解】圆,即则由垂径定理可得点到直线距离为根据点到直线距离公式可知,化简可得解得故选:A【题目点拨】本题考查了圆的普通方程与标准方程的转化,垂径定理及点到直线距离公式的应用,属于基础题.11、B【解题分析】

分别画出和的图象,依题意存在实数,,使不等式对一切正数都成立,要求参数的最小值,临界条件即为直线:恰为函数和的公切线,设函数上的切点,则,即转化为求,设函数的切点为,表示出切线方程,即可得到方程组,整理得到,令,求出令即可得解;【题目详解】解:分别画出和的图象,依题意存在实数,,使不等式对一切正数都成立,要求参数的最小值,临界条件即为直线:恰为函数和的公切线,设函数上的切点,,,所以,所以切线方程为,整理得,同时直线也是函数的切线,设切点为,所以切线方程为,整理得,所以,整理得,即,令,则,所以在上单调递减,在上单调递增,故,显然,故当时取得最小值,即实数的最小值为4,故选:B.【题目点拨】本题考查利用导数分析恒成立问题,两曲线的公切线问题,属于中档题.12、D【解题分析】依题意可知直线过圆心,代入直线方程得,当且仅当时当好成立,此时原点到直线的距离为.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:由两条直线互相垂直,可知两条直线的斜率之积为-1,进而求得参数m的值。详解:斜率为直线斜率为两直线垂直,所以斜率之积为-1,即所以点睛:本题考查了两条直线垂直条件下斜率之间的关系,属于简单题。14、【解题分析】

通过表示,再利用可计算出,再计算出可得答案.【题目详解】由于M,N分别是边AD,BC的中点,故,,所以,所以,所以,而,所以,即,故,故答案为【题目点拨】本题主要考查向量的基底表示,数量积运算,意在考查学生的空间想象能力,运算能力,逻辑分析能力,难度较大.15、8640【解题分析】

根据题意,分2步进行分析:①,在除甲乙之外的6人中任选3人,与甲乙一起排在后排,满足甲乙不相邻,②,将剩下的三人全排列,安排在前排,由分步计数原理计算可得答案。【题目详解】根据题意,分2步进行分析:①,在除甲乙之外的6人中任选3人,与甲乙一起排在后排,由于甲乙不能相邻,则有C6②,将剩下的三人全排列,安排在前排,有A3则有1440×6=8640种排法;故答案为:8640。【题目点拨】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)。(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法。16、1【解题分析】

由程序框图知该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】模拟执行如图所示的程序框图如下,判断,第1次执行循环体后,,,;判断,第2次执行循环体后,,,;判断,第3次执行循环体后,,,;判断,退出循环,输出的值为1.【题目点拨】本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间是,单调递增区间是;(2).【解题分析】

(1)根据切线的斜率可求出,得,求导后解不等式即可求出单调区间.(2)原不等式可化为恒成立,令,求导后可得函数的最小值,即可求解.【题目详解】(1)函数的定义域为,,又曲线在点处的切线与直线平行所以,即,由且,得,即的单调递减区间是由得,即的单调递增区间是.(2)由(1)知不等式恒成立可化为恒成立即恒成立令当时,,在上单调递减.当时,,在上单调递增.所以时,函数有最小值由恒成立得,即实数的取值范围是.【题目点拨】本题主要考查了导数的几何意义,利用导数求函数的单调区间,最值,恒成立问题,属于中档题.18、(1);(2)见解析【解题分析】

(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【题目详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【题目点拨】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.19、存在,.【解题分析】

由已知条件,可求出数列和通项公式,由,化简即可得出的值.【题目详解】由,得,,由,得,由,所以且为等差数列,则是公差,由所以,即得,所以,且.所以.【题目点拨】本题主要考查等差数列和等比数列的通项公式,以及数列前项和的定义.20、(1)详见解析;(2)详见解析.【解题分析】

试题分析:(1)求导数得,又,所以,由此可得函数的单调性,进而可求得极值;(2)由,得.因此分和两种情况判断函数的单调性,然后根据零点存在定理判断函数零点的个数.试题解析:(1)∵,∴,因为,所以,当x变化时,的变化情况如下表:100递增极大值递减极小值递增由表可得当时,有极大值,且极大值为,当时,有极小值,且极小值为.(2)由(1)得.∵,∴.①当时,在上单调递增,在上递减又因为所以在(0,1)和(1,2)上各有一个零点,所以上有两个零点.②当,即时,在上单调递增,在上递减,在上递增,又因为所以在上有且只有一个零点,在上没有零点,所以在上有且只有只有一个零点.综上:当时,在上有两个零点;当时,在上有且只有一个零点.点睛:利用导数研究方程根(函数零点)的方法研究方程根(函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论