四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题含解析_第1页
四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题含解析_第2页
四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题含解析_第3页
四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题含解析_第4页
四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳市重点初中2024届高二数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)2.某公司为确定明年投入某产品的广告支出,对近年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为()A. B. C. D.3.已知变量,之间的一组数据如下表:13572345由散点图可知变量,具有线性相关,则与的回归直线必经过点()A. B. C. D.4.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A. B. C. D.5.已知数列的前项和为,且满足,则下列结论中()①数列是等差数列;②;③A.仅有①②正确 B.仅有①③正确 C.仅有②③正确 D.①②③均正确6.由曲线,,,围成图形绕y轴旋转一周所得为旋转体的体积为,满足,,的点组成的图形绕y轴旋一周所得旋转体的体积为,则()A. B. C. D.7.函数在点处的导数是().A.0 B.1 C.2 D.38.点M的极坐标(4,A.(4,π3) B.(49.设,下列不等式中正确的是()①②③④A.①和② B.①和③ C.①和④ D.②和④10.已知双曲线C的中心在原点,焦点在轴上,若双曲线C的一条渐近线与直线平行,则双曲线C的离心率为()A. B. C. D.11.设函数为自然对数的底数)在上单调递增,则实数的取值范围为()A. B. C. D.12.把边长为的正沿边上的高线折成的二面角,则点到的距离是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正方体中,、分别是、的中点,则直线与平面所成角的正弦值为______.14.设函数f(x)={21-x,x≤115.“直线与平面内无数条直线垂直”是“”的______条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)16.把6个学生分配到3个班去,每班2人,其中甲必须分到一班,乙和丙不能分到三班,不同的分法共有__________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,其中为虚数单位,.(1)若,求实数的值;(2)若在复平面内对应的点位于第一象限,求实数的取值范围.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.19.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.20.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)求的单调区间;(3)若在区间上恒成立,求实数a的取值范围.21.(12分)已知函数.(1)求函数在区间上的最大值和最小值;(2)已知,求满足不等式的的取值范围.22.(10分)面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为SKIPIF1<0.求:(1)他们能研制出疫苗的概率;(2)至多有一个机构研制出疫苗的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【题目详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【题目点拨】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。2、D【解题分析】分析:求出,代入回归方程计算,利用平均数公式可得出的值.详解:,,,解得,故选D.点睛:本题主要考查平均数公式的应用,线性回归方程经过样本中心的性质,意在考查综合利用所学知识解决问题的能力,属于基础题.3、C【解题分析】

由表中数据求出平均数和即可得到结果.【题目详解】由表中数据知,,,则与的回归直线必经过点.故选:C.【题目点拨】本题主要考查回归分析的基本思想及应用,理解并掌握回归直线方程必经过样本中心点,属基础题.4、A【解题分析】

根据原函数的单调性,判断导数的正负,由此确定正确选项.【题目详解】根据的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有选项符合,故本题选A.【题目点拨】本小题主要考查导数与单调性的关系,考查数形结合的思想方法,属于基础题.5、D【解题分析】

由条件求得,可判断①,由①得,可判断②;由判断③,可知①②③均正确,可选出结果.【题目详解】①由条件知,对任意正整数n,有1=an(2Sn﹣an)=(Sn﹣Sn﹣1)(Sn+Sn﹣1),又所以{}是等差数列.②由①知或显然,当.,<0显然成立,故②正确③仅需考虑an,an+1同号的情况,不失一般性,可设an,an+1均为正(否则将数列各项同时变为相反数,仍满足条件),由②故有,,此时,,从而()1.故选:D.【题目点拨】本题考查数列递推式,不等式的证明,属于一般综合题.6、C【解题分析】

由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与轴垂直的平面截这两个旋转体,设截面与原点距离为,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等.【题目详解】解:如图,两图形绕轴旋转所得的旋转体夹在两相距为8的平行平面之间,用任意一个与轴垂直的平面截这两个旋转体,设截面与原点距离为,所得截面面积,,由祖暅原理知,两个几何体体积相等,故选:.【题目点拨】本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于基础题.7、C【解题分析】

求导后代入即可.【题目详解】易得,故函数在点处的导数是.故选:C【题目点拨】本题主要考查了导数的运算,属于基础题.8、C【解题分析】

在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【题目详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【题目点拨】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。9、C【解题分析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab>0,所以a,b同号.对于①,由绝对值三角不等式得,所以①是正确的;对于②,当a,b同号时,,所以②是错误的;对于③,假设a=3,b=2,所以③是错误的;对于④,由绝对值三角不等式得,所以④是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.10、A【解题分析】分析:根据双曲线的一条渐近线与直线平行,利用斜率相等列出的关系式,即可求解双曲线的离心率.详解:双曲线的中心在原点,焦点在轴上,若双曲线的一条渐近线与直线平行,可得,即,可得,离心率,故选A.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.11、D【解题分析】

根据单调性与导数的关系,有在上恒成立,将恒成立问题转化成最值问题,利用导数,研究的单调性,求出最小值,即可得到实数的取值范围。【题目详解】依题意得,在上恒成立,即在上恒成立,设,令,,,所以,,,故选D。【题目点拨】本题主要考查函数单调性与导数的关系,将函数在某区间单调转化为导数或者的恒成立问题,再将其转化为最值问题,是解决此类问题的常规思路。12、D【解题分析】

取中点,连接,根据垂直关系可知且平面,通过三线合一和线面垂直的性质可得,,从而根据线面垂直的判定定理知平面,根据线面垂直性质知,即为所求距离;在中利用勾股定理求得结果.【题目详解】取中点,连接,如下图所示:为边上的高,即为二面角的平面角,即且平面为正三角形为正三角形又为中点平面,平面又平面即为点到的距离又,本题正确选项:【题目点拨】本题考查立体几何中点到直线距离的求解,关键是能够通过垂直关系在立体图形中找到所求距离,涉及到线面垂直的判定定理和性质定理的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值.【题目详解】设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立如下图所示空间直角坐标系.则点、、、、、,设平面的一个法向量为,则,.由,即,得,令,则,.可知平面的一个法向量为,又.,因此,直线与平面所成角的正弦值为,故答案为.【题目点拨】本题考查直线与平面所成角的正弦的计算,解题的关键就是建立空间直角坐标系,将问题利用空间向量法进行求解,考查运算求解能力,属于中等题.14、-1【解题分析】f[f(-1)]=f(点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、必要不充分.【解题分析】

根据平面内与斜线在平面内的射影垂直的直线必定与垂直,可知充分性不成立;根据线面垂直的定义,可得必要性成立.由此得到正确答案【题目详解】解:(1)充分性:当直线与平面斜交,且在平面内的射影为,若内的直线与垂直时与垂直,并且满足条件的直线有无数条.这样平面内有无数条直线垂直,但与不垂直,因此充分性不成立;(2)必要性:当“”成立时,内的任意一条直线都与垂直,因此“直线与平面内无数条直线垂直”成立,所以必要性成立.故答案为:必要不充分.【题目点拨】本题考查了判断两命题间的充分、必要条件,考查了直线与平面的位置关系.对于两个命题,,判断他们的关系时,常常分为两步,以为条件,判断是否成立;以为条件,判断是否成立.16、1【解题分析】

根据题意,分3步分析:①、让甲分到一班,②、再从除了甲、乙、丙之外的3个人种任意选出2个人,分到三班,③、最后再把剩下的3个人选出2个人分到二班,剩余的一个分到一班,由分步计数原理计算可得答案.【题目详解】根据题意,分3步分析:①、让甲分到一班,只有1种方法;②、再从除了甲、乙、丙之外的3个人种任意选出2个人,分到三班,有C32=3种安排方法;③、最后再把剩下的3个人选出2个人分到二班,剩余的一个分到一班,有C32=3种安排方法;则不同的分法有1×3×3=1种;故答案为:1.【题目点拨】本题考查分步计数原理的应用,关键是对于有限制的元素要优先排,特殊位置要优先排.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)先进行化简,结合复数为实数的等价条件建立方程进行求解即可.(2)结合复数的几何意义建立不等式关系进行求解即可.【题目详解】解:(1)由题意,根据复数的运算,可得,由,则,解得.(2)由在复平面内对应的点位于第一象限,则且,解得,即.【题目点拨】本题主要考查复数的计算以及复数几何意义的应用,结合复数的运算法则进行化简是解决本题的关键,属于基础题.18、(1)A.(2).【解题分析】

(1)利用正弦定理完成边化角,再根据在三角形中有,完成化简并计算出的值;(2)利用的值以及余弦定理求解出的值,再由面积公式即可求解出△ABC的面积.【题目详解】(1)在三角形ABC中,∵(2b﹣c)cosA=acosC,由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,sinB≠0,解得cosA,,∴A.(2)由余弦定理得a2=b2+c2﹣2bccosA,∵a,b+c=5,∴13=(b+c)2﹣3cb=52﹣3bc,化为bc=4,所以三角形ABC的面积SbcsinA4.【题目点拨】本题考查解三角形的综合运用,难度一般.(1)解三角形的问题中,求解角的大小时,要注意正、余弦定理的选择,同时注意使用正弦定理时要注意是否满足齐次的情况;(2)注意解三角形时的隐含条件的使用.19、(1)证明见解析.(2).【解题分析】分析:(1)根据菱形的性质以及线面垂直的性质可推导出,,从而得到,由此证明平面,从而得到;(2)分别以、、为,,轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求出求出平面与平面的向量法,利用空间向量夹角余弦公式可得结果.详解:(Ⅰ)证明:因为底面为菱形,,且为的中点,所以.又,所以.又底面,所以.于是平面,进而可得.(Ⅱ)解:分别以、、为,,轴,设,则,,,.显然,平面的法向量为,设平面的法向量为,则由解得.所以故平面与平面所成锐二面角的余弦值为.点睛:本题主要考查利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20、(1)切线方程为.(2)当时,的单调增区间是和,单调减区间是;当时,的单调增区间是;当时,的单调增区间是和,单调减区间是.(1).【解题分析】试题分析:(1)求出a=1时的导数即此时切线的斜率,然后由点斜式求出切线方程即可;(2)对于含参数的单调性问题的关键时如何分类讨论,常以导数等于零时的根与区间端点的位置关系作为分类的标准,然后分别求每一种情况时的单调性;(1)恒成立问题常转化为最值计算问题,结合本题实际并由第二问可知,函数在区间[1,e]上只可能有极小值点,所以只需令区间端点对应的函数值小于等于零求解即可.试题解析:(1)∵a=1,∴f(x)=x2-4x+2lnx,∴f′(x)=(x>0),f(1)=-1,f′(1)=0,所以切线方程为y=-1.(2)f′(x)=(x>0),令f′(x)=0得x1=a,x2=1,当0<a<1时,在x∈(0,a)或x∈(1,+∞)时,f′(x)>0,在x∈(a,1)时,f′(x)<0,∴f(x)的单调递增区间为(0,a)和(1,+∞),单调递减区间为(a,1);当a=1时,f′(x)=≥0,∴f(x)的单调增区间为(0,+∞);当a>1时,在x∈(0,1)或x∈(a,+∞)时,f′(x)>0,在x∈(1,a)时,f′(x)<0,∴f(x)的单调增区间为(0,1)和(a,+∞),单调递减区间为(1,a).(1)由(2)可知,f(x)在区间[1,e]上只可能有极小值点,∴f(x)在区间[1,e]上的最大值必在区间端点取到,∴f(1)=1-2(a+1)≤0且f(e)=e2-2(a+1)e+2a≤0,解得a≥.考点:导数法求切线方程;‚求含参数的函数的单调性问题;ƒ恒成立问题求参数范围.【方法点睛】恒成立问题求参数范围常常将参数移到一边转化为函数最值问题即恒成立,即等价于.该解法的优点是不用讨论,但是当参数不易移到一边,或移到一边后另一边的函数值域不易求时,就不要移,而是将不等式的一边化为零即,由于此时函数含有参数,所以应讨论并求最值,从而求解.21、(1)最小值为-1,最大值为8;(2)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论