安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题含解析_第1页
安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题含解析_第2页
安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题含解析_第3页
安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题含解析_第4页
安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽凤阳县城西中学2024届数学高二第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知服从正态分布的随机变量,在区间、和内取值的概率分别为、、和.某企业为名员工定制工作服,设员工的身高(单位:)服从正态分布,则适合身高在范围内员工穿的服装大约要定制()A.套 B.套 C.套 D.套2.已知集合,集合,则()A. B.C. D.3.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a4.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.以为焦点的抛物线的标准方程是()A. B. C. D.6.已知a=tan(-π5)A.a>b>c B.c>b>aC.c>a>b D.b>c>a7.设M为曲线C:y=2x2+3x+3上的点,且曲线C在点M处切线倾斜角的取值范围为3πA.[-1,+∞) B.-∞,-34 C.-1,-8.已知向量,若,则()A. B. C. D.9.若函数f(x)=x3-ax2A.a≥3 B.a>3 C.a≤3 D.0<a<310.函数的单调递增区间是()A. B. C.(1,4) D.(0,3)11.函数(为自然对数的底数)在区间上的最大值是()A. B. C. D.12.若随机变量,其均值是80,标准差是4,则和的值分别是()A.100,0.2 B.200,0.4 C.100,0.8 D.200,0.6二、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.已知,,设,则_______.15.若实数,满足条件,则的最大值为__________.16.观察下列算式:,,,,…,,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(其中),.(Ⅰ)若命题“”是真命题,求的取值范围;(Ⅱ)设命题:;命题:.若是真命题,求的取值范围.18.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别

是否需要志愿者

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗19.(12分)已知函数,且函数在和处都取得极值.(1)求,的值;(2)求函数的单调递增区间.20.(12分)已知函数.(1)若在处的切线与轴平行,求的值;(2)当时,求的单调区间.21.(12分)如图所示:在底面为直角梯形的四棱锥中,,面,E、F分别为、的中点.如果,,与底面成角.(1)求异面直线与所成角的大小(用反三角形式表示);(2)求点D到平面的距离.22.(10分)已知均为正数,证明:,并确定为何值时,等号成立.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由可得,,则恰为区间,利用总人数乘以概率即可得到结果.【题目详解】由得:,,,又适合身高在范围内员工穿的服装大约要定制:套本题正确选项:【题目点拨】本题考查利用正态分布进行估计的问题,属于基础题.2、C【解题分析】

根据对数函数的定义域,化简集合集合,再利用交集的定义求解即可.【题目详解】因为集合,集合,所以由交集的定义可得,故选C.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.3、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.4、A【解题分析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.5、A【解题分析】

由题意和抛物线的性质判断出抛物线的开口方向,并求出的值,即可写出抛物线的标准方程.【题目详解】因为抛物线的焦点坐标是,

所以抛物线开口向右,且=2,

则抛物线的标准方程.

故选:A.【题目点拨】本题考查抛物线的标准方程以及性质,属于基础题.6、D【解题分析】

首先通过诱导公式,化简三个数,然后判断它们的正负性,最后利用商比法判断a,c的大小,最后选出正确答案.【题目详解】a=tan而ac=【题目点拨】本题考查了诱导公式、以及同角三角函数关系,以及商比法判断两数大小.在利用商比法时,要注意分母的正负性.7、D【解题分析】

求出导函数y',倾斜角的范围可转化为斜率的范围,斜率就是导数值,由可得y'的不等式,解之可得.【题目详解】由题意y'=4x+3,切线倾斜角的范围是[3π4,π),则切线的斜率k∴-1≤4x+3<0,解得-1≤x<-3故选D.【题目点拨】本题考查导数的几何意义:函数在某一点处的导数就是其图象在该点处的切线的斜率.解题时要注意直线倾斜角与直线斜率之间的关系,特别是正切函数的性质.8、C【解题分析】

首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【题目详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【题目点拨】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.9、A【解题分析】

函数f(x)=x3-ax2+1在(0,2)【题目详解】由题意得f(x)=x3-ax2+1⇒f'x=3x2-2ax,因为函数【题目点拨】本题主要考查了利用导数判断函数在某个区间上恒成立的问题。通常先求导数然后转化成二次函数恒成立的问题。属于中等题。10、B【解题分析】

求出函数的导数,在解出不等式可得出所求函数的单调递增区间.【题目详解】,,解不等式,解得,因此,函数的单调递增区间是,故选B.【题目点拨】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.11、D【解题分析】分析:先求导,再求函数在区间[-1,1]上的最大值.详解:由题得令因为.所以函数在区间[-1,1]上的最大值为e-1.故答案为D.点睛:(1)本题主要考查利用导数求函数的最值,意在考查学生对该知识的掌握水平.(2)设是定义在闭区间上的函数,在内有导数,可以这样求最值:①求出函数在内的可能极值点(即方程在内的根);②比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.12、C【解题分析】

根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于和的方程组,解方程组得到要求的两个未知量.【题目详解】∵随机变量,其均值是80,标准差是4,∴由,∴.故选:C.【题目点拨】本题主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用组合数的性质公式可以得到两个方程,解方程即可求出的值.【题目详解】因为,所以有或.当时,,方程无实根;当时,,综上所述:故答案为:【题目点拨】本题考查了组合数的性质公式,考查了解方程的能力,属于基础题.14、【解题分析】

对求导,代值计算可得.【题目详解】,又,故答案为:【题目点拨】本题考查导数运算.导数运算法则(1);(2);(3)()15、6【解题分析】分析:现根据约束条件画出可行域,再利用几何意义求最值,求出最优解,然后求解的最大值即可.详解:现根据实数满足条件,画出可行域,如图所示,由目标函数,则,结合图象可知,当直线过点时,目标函数取得最大值,此时最大值为.点睛:本题主要考查了简单的线性规划求最大值,其中画出约束条件所表示的平面区域,根据直线的几何意义求解是解答的关键,着重考查了推理与运算能力.16、142;【解题分析】

观察已知等式的规律,可猜想第行左边第一个奇数为后续奇数依次为:由第行第一个数为,即:,解得:,可得:,即可得解.【题目详解】第行等号左边第一个加数为第个奇数,即,于是第一个加数为,所以第个等式为,,【题目点拨】本题主要考查归纳与推理,猜想第行左边第一个奇数为进而后续奇数依次为:是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解题分析】试题分析:(1),即,,解得;(2)是真命题,则都是真命题.当时,,故需.或,故,.当时,,故需.,所以,.综上所述,.试题解析:(1)∵命题“”是真命题,即,∴,解得,∴的取值范围是;(2)∵是真命题,∴与都是真命题,当时,,又是真命题,则∵,∴,∴或∴,解得当时,∵是真命题,则,使得,而∵,∴,∴,解得求集合的交集可得.考点:命题真假性判断,含有逻辑联结词的命题.18、(1);(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关.【解题分析】试题分析:(1)由列联表可知调查的500位老年人中有位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值;(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.试题解析:解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)根据表中数据计算得:。由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。考点:独立性检验.19、(1),;(2).【解题分析】

(1)易得和为导函数的两个零点,代入计算即可求得.(2)求导分析的解集即可.【题目详解】(1)∵.∴,∵函数在和处都取得极值,故和为的两根.故.即,(2)由(1)得故当,即时,即,解得或.∴函数的单调递增区间为.【题目点拨】本题主要考查了根据极值点求解参数的问题以及求导分析函数单调增区间的问题.需要根据题意求导,根据极值点为导函数的零点以及导函数大于等于0则原函数单调递增求解集即可.属于中档题.20、(1)(2)函数在上递增,在上递减【解题分析】

(1)求导数,将代入导函数,值为0,解得.(2)当时,代入函数求导,根据导数的正负确定函数单调性.【题目详解】解:(1)函数的定义域为又,依题有,解得.(2)当时,,令,解得,(舍)当时,,递增,时,,递减;所以函数在上递增,在上递减.【题目点拨】本题考查了函数的切线,函数的单调性,意在考查学生的计算能力.21、(1);(2)【解题分析】

(1)先确定与底面所成角,计算SA,再建立空间直角坐标系,利用向量数量积求异面直线与所成角;(2)先求平面的一个法向量,再利用向量投影求点D到平面的距离.【题目详解】(1)因为面,所以是与底面所成角,即,因为,以为坐标原点,所在直线分别为x,y,z轴建立空间直角坐标系,则,从而,,因此所以异面直线与所成角为,(2)设平面的一个法向量为,因为,所以令,从而点D到平面的距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论