2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题含解析_第1页
2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题含解析_第2页
2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题含解析_第3页
2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题含解析_第4页
2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省牡丹江市五县市高二数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列{}的前项和为,若,则=A.20 B.35 C.45 D.902.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种3.已知函数,给出下列四个说法:;函数的周期为;在区间上单调递增;的图象关于点中心对称其中正确说法的序号是A. B. C. D.4.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.5.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.6.已知函数f(x)在R上可导,且f(x)=x2A.f(x)=x2C.f(x)=x27.函数f(x)=3A. B. C. D.8.一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则()A. B. C. D.9.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年10.甲、乙两人进行三打二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为A.0.36 B.0.216 C.0.432 D.0.64811.已知函数,若,则实数的取值范围是()A. B.C. D.12.经过椭圆的一个焦点作倾斜角为的直线l,交椭圆于M,N两点,设O为坐标原点,则等于A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若方程有实数解,则的取值范围是____.14.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.15.的展开式中第三项的系数为_________。16.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”则乙的卡片上的数字是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为虚数单位,复数满足,(1)求.(2)在复平面内,为坐标原点,向量,对应的复数分别是,,若是直角,求实数的值.18.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集不是空集,求实数的取值范围.19.(12分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.20.(12分)如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.21.(12分)已知函数.(1)若,求函数的极值;(2)当时,判断函数在区间上零点的个数.22.(10分)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用等差数列的前n项和的性质得到S9=,直接求解.【题目详解】∵等差数列{an}的前n项和为Sn,a4+a6=10,∴S9=故选:C.【题目点拨】这个题目考查的是数列求和的常用方法;数列通项的求法中有:直接根据等差等比数列公式求和;已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。2、A【解题分析】

根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【题目详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【题目点拨】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.3、B【解题分析】

根据函数的周期性可排除,同时可以确定对.由,可去绝对值函数化为,可判断对.由取特值,可确定错.【题目详解】,所以函数的周期不为,错,,周期为.=,对.当时,,,所以f(x)在上单调递增.对.,所以错.即对,填.【题目点拨】本题以绝对值函数形式综合考查三角函数求函数值、周期性、单调性、对称性等性质,需要从定义角度入手分析,也是解题之根本.4、C【解题分析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.5、C【解题分析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【题目详解】,,,故答案选C【题目点拨】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.6、A【解题分析】

先对函数f(x)求导,然后将x=1代入导函数中,可求出f'(1)=-2,从而得到f(x)【题目详解】由题意,f'(x)=2x+2f'(1),则f故答案为A.【题目点拨】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.7、B【解题分析】

取特殊值排除得到答案.【题目详解】f(x)=3x故答案选B【题目点拨】本题考查了函数图像的判断,特殊值可以简化运算.8、C【解题分析】

根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,由于回归直线过样本中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.9、C【解题分析】

按照题中规则依次从2019年列举到2026年,可得出答案。【题目详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【题目点拨】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。10、D【解题分析】分析:由题意,要使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式,即可求解答案.详解:由题意,每局中甲取胜的概率为,乙取胜的概率为,则使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式得:,故选D.点睛:本题主要考查了相互独立事件同时发生的概率和互斥事件的概率的计算,其中根据题意得出甲取胜的三种情况是解答本题的关键,着重考查了分析问题和解答问题的能力.11、A【解题分析】

代入特殊值对选项进行验证排除,由此得出正确选项.【题目详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【题目点拨】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.12、C【解题分析】

椭圆化标准方程为,求得,设直线方程为,代入椭圆方程,求得交点坐标,由向量坐标运算求得.【题目详解】椭圆方程为,,取一个焦点,则直线方程为,代入椭圆方程得,,所以,选C.【题目点拨】本题综合考查直线与椭圆相交问题,及向量坐标运算,由于本题坐标好求所以直接求坐标,代入向量坐标运算.一般如果不好求坐标点,都是用韦达定理设而不求.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

关于x的方程sinxcosx=c有解,即c=sinxcosx=2sin(x-)有解,结合正弦函数的值域可得c的范围.【题目详解】解:关于x的方程sinx-cosx=c有解,即c=sinx-cosx=2sin(x-)有解,由于x为实数,则2sin(x-)∈[﹣2,2],故有﹣2≤c≤2【题目点拨】本题主要考查两角差的正弦公式、正弦函数的值域,属于中档题.14、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.

考点:1、线性规划的应用;2、利用基本不等式求最值.15、6【解题分析】

利用二项展开式的通项公式,当时得到项,再抽出其系数.【题目详解】,当时,,所以第三项的系数为,故填.【题目点拨】本题考查二项展开式的简单运用,考查基本运算能力,注意第3项不是,而是.16、1和2【解题分析】

由题意分析可知甲的卡片上的数字为1和2,乙的卡片上的数字为1和2,丙的卡片上的数字为1和1.【题目详解】由题意可知丙不拿1和2.

若丙拿1和1,则乙拿1和2,甲拿1和2,满足题意;

若丙拿1和2,则乙拿1和2,甲拿1和1,不满足题意.

故乙的卡片上的数字是1和2.故答案为:1和2【题目点拨】本题主要考查推理,考查学生逻辑思维能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)z=3+4i;(2)c=8【解题分析】

(1)设,由,进行计算化简,得到关于的方程组,解得答案;(2)代入(1)中求出的,然后由∠AOB是直角,得到,得到关于的方程,求出的值.【题目详解】(1)设,由,得,∴,解得.∴;(2)由题意,的坐标分别为∴,,∵是直角,∴,即.【题目点拨】本题考查复数的运算,复数模长的表示,向量垂直的坐标表示,属于简单题.18、(Ⅰ);(Ⅱ)【解题分析】

(Ⅰ)分别在、和三种情况下讨论,去掉绝对值求得结果;(Ⅱ)由解集不是空集可知:且;利用绝对值三角不等式求得,解不等式求得结果.【题目详解】(Ⅰ)当时,不等式为当时,,解得:;当时,,显然不等式不成立;当时,则,解得:综上可得,不等式的解集为:或(Ⅱ)不等式的解集不是空集,则,且,即又,解得:实数的取值范围是【题目点拨】本题考查绝对值不等式的解法、绝对值三角不等式求最值、恒成立思想的应用等知识,关键是能够将不等式解集不是空集转化为参数与函数最值之间的比较,从而利用绝对值三角不等式求得最值,属于常考题型.19、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【题目详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【题目点拨】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.20、(1)(2)【解题分析】

(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【题目详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,又∵,∴为等腰直角三角形,∴,∴当时,四边形面积有最大值,最大值为.【题目点拨】本题主要考查余弦定理解三角形、诱导公式、三角形面积公式和利用三角函数求最值,考查学生的分析转化能力和计算能力,属于中档题.21、(1)详见解析;(2)详见解析.【解题分析】

试题分析:(1)求导数得,又,所以,由此可得函数的单调性,进而可求得极值;(2)由,得.因此分和两种情况判断函数的单调性,然后根据零点存在定理判断函数零点的个数.试题解析:(1)∵,∴,因为,所以,当x变化时,的变化情况如下表:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论