版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省曲靖一中高二数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设袋中有大小相同的80个红球、20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A. B. C. D.2.已知f(x)=2x,x<0a+log2x,x≥0A.-2 B.2 C.0 D.13.在我国南北朝时期,数学家祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.其意思是,用一组平行平面截两个几何体,若在任意等高处的截面面积都对应相等,则两个几何体的体积必然相等.根据祖暅原理,“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.405.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.6.已知直线是圆的对称轴,则实数()A. B. C.1 D.27.若复数,则()A. B. C. D.8.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1109.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种 B.63种 C.65种 D.66种10.已知函数,若与的图象上分别存在点、,使得、关于直线对称,则实数的取值范围是()A. B. C. D.11.在含有2件次品的6件产品中任取3件,恰有1件次品的概率为()A. B. C. D.12.设,均为实数,且,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式的解集是空集,则实数的取值范围是__________.14.若,则____.15.已知从装有个球(其中个白球,1个黑球)的口袋中取出个球,,,共有种取法,在这种取法中,可以分成两类:一类是取出的个球全部为白球,另一类是取出1个黑球和个白球,共有种取法,即有等式成立,试根据上述思想,化简下列式子:________,16.不等式的解集为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,.(1)证明:对任意实数,函数都不是奇函数;(2)当时,求函数的单调递增区间.18.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程=bx+a,其中b=-20,a=-b;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)19.(12分)已知函数在与时都取得极值.(1)求的值与函数的单调区间;(2)若对,不等式恒成立,求的取值范围.20.(12分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(Ⅰ)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.21.(12分)如图(A),(B),(C),(D)为四个平面图形:(A)(B)(C)(D)(I)数出每个平面图形的交点数、边数、区域数,并将列联表补充完整;交点数边数区域数(A)452(B)58(C)125(D)15(II)观察表格,若记一个平面图形的交点数、边数、区域数分别为,试猜想间的数量关系(不要求证明).22.(10分)已知函数.(1)判断的奇偶性并予以证明;(2)求不等式的解集.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】本题是一个古典概型,∵袋中有80个红球20个白球,若从袋中任取10个球共有种不同取法,而满足条件的事件是其中恰有6个红球,共有种取法,由古典概型公式得到P=,本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.2、C【解题分析】
由函数fx=2x,x<0a+log2【题目详解】∵函数fx∴f(﹣1)=12∴f[f(﹣1)]=f12解得:a=0,故选:C.【题目点拨】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.3、A【解题分析】
先阅读题意,再由原命题与其逆否命题的真假及充分必要条件可得解【题目详解】由已知有”在任意等高处的截面面积都对应相等”是“两个几何体的体积必然相等“的充分条件不必要条件,结合原命题与其逆否命题的真假可得:“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的充分不必要条件,故选:A.【题目点拨】本题考查了阅读能力、原命题与其逆否命题的真假及充分必要条件,属中档题。4、D【解题分析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=405、A【解题分析】
根据选项中的等高条形图看出共享与不共享时对企业经济活跃度差异大小,从而得出结论.【题目详解】根据四个等高条形图可知:图形A中共享与不共享时对企业经济活跃度的差异最大它最能体现共享经济对该部门的发展有显著效果.故选:A.【题目点拨】本题主要考查条形统计图的应用,考查学生理解分析能力和提取信息的能力,属于基础题.6、B【解题分析】
由于直线是圆的对称轴,可知此直线过圆心,将圆心坐标代入直线方程中可求出的值【题目详解】解:圆的圆心为,因为直线是圆的对称轴,所以直线过圆心,所以,解得,故选:B【题目点拨】此题考查直线与圆的位置关系,利用了圆的对称性求解,属于基础题7、C【解题分析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可得:.本题选择C选项.点睛:本题主要考查复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.8、B【解题分析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.9、D【解题分析】试题分析:要得到四个数字的和是偶数,需要分成三种不同的情况,当取得个偶数时,有种结果,当取得个奇数时,有种结果,当取得奇偶时有种结果,共有种结果.故答案为D.考点:分类计数原理.10、A【解题分析】
先求得关于对称函数,由与图像有公共点来求得实数的取值范围.【题目详解】设函数上一点为,关于对称点为,将其代入解析式得,即.在同一坐标系下画出和的图像如下图所示,由图可知,其中是的切线.由得,而,只有A选项符合,故选A.【题目点拨】本小题主要考查函数关于直线对称函数解析式的求法,考查两个函数有交点问题的求解策略,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.11、A【解题分析】
求出基本事件的总数和恰有1件次品包含的基本事件个数即可.【题目详解】在含有2件次品的6件产品中任取3件,基本事件的总数为:恰有1件次品包含的基本事件个数为在含有2件次品的6件产品中任取3件,恰有1件次品的概率为故选:A【题目点拨】本题考查的是古典概型及组合的知识,较简单.12、B【解题分析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.二、填空题:本题共4小题,每小题5分,共20分。13、(-∞,6]【解题分析】由题意可设,则当时,;当时,;当时,不等式可化为。在平面直角坐标系中画出函数的图像如图,结合图像可知当,不等式的解集是空集,则实数的取值范围是,应填答案。14、【解题分析】
通过,即可求出的值,通过,即可求出的值,最终可求出的值.【题目详解】令,可得令,可得【题目点拨】本题通过赋值法来研究二项展开式系数的和,是一道基础题.15、【解题分析】
在式子中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,从装有球中取出个球的不同取法数,根据排列组合公式,易得答案.【题目详解】在中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,故从装有球中取出个球的不同取法数.故答案为:【题目点拨】本题结合考查推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.16、【解题分析】
由题意可化为,根据不等式性质化简即可求解.【题目详解】由题意可知,即,解得,所以不等式的解集,故答案为:.【题目点拨】本题主要考查了含绝对值不等式的解法,一元二次不等式的解法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】
(1)利用反证法验证即可证得结论;(2)根据函数解析式求得和,根据可得在上单调递增;根据可求得的解集,从而得到所求单调递增区间.【题目详解】(1)假设函数为奇函数且定义域为,则这与矛盾对任意实数,函数不可能是奇函数(2)当时,,则;在上单调递增又,则当时,的单调递增区间为:【题目点拨】本题考查利用反证法证明、函数单调区间的求解,涉及到函数奇偶性的应用、导数与函数单调性之间的关系,属于常规题型.18、(1)y=-20x+250;(2)8.25.【解题分析】
(1)计算平均数,利用b=-20,,即可求得回归直线方程;(2)设工厂获得的利润为L元,利用利润=销售收入-成本,建立函数,利用配方法可求工厂获得的利润最大.【题目详解】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80,a=+20=80+20×8.5=250⇒.(2)工厂获得利润z=(x-4)y=-20x2+330x-1000.当x==8.25时,zmax=361.25(元)【考点定位】本题主要考查回归分析,一元二次函数等基础知识,考查运算能力、应用意识、转化与化归思想、特殊与一般思想考点:回归分析的初步应用;线性回归方程19、解:(1),递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)【解题分析】
(1)求出f(x),由题意得f()=0且f(1)=0联立解得与b的值,然后把、b的值代入求得f(x)及f(x),讨论导函数的正负得到函数的增减区间;(1)根据(1)函数的单调性,由于x∈[﹣1,1]恒成立求出函数的最大值为f(1),代入求出最大值,然后令f(1)<c1列出不等式,求出c的范围即可.【题目详解】(1),f(x)=3x1+1ax+b由解得,f(x)=3x1﹣x﹣1=(3x+1)(x﹣1),函数f(x)的单调区间如下表:x(﹣∞,)(,1)1(1,+∞)f(x)+0﹣0+f(x)极大值极小值所以函数f(x)的递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)因为,根据(1)函数f(x)的单调性,得f(x)在(﹣1,)上递增,在(,1)上递减,在(1,1)上递增,所以当x时,f(x)为极大值,而f(1)=,所以f(1)=1+c为最大值.要使f(x)<对x∈[﹣1,1]恒成立,须且只需>f(1)=1+c.解得c<﹣1或c>1.【题目点拨】本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数恒成立问题,属于中档题.20、(Ⅰ).(Ⅱ)见解析.【解题分析】试题分析:(1)本题为独立重复试验,根据独立重复试验概率公式列方程组解得,再根据独立重复试验概率公式求至少命中2次的概率;(2)先确定随机变量可能取法:0,1,2,3,4,再根据独立重复试验概率公式求对应概率,列表得分布列,最后根据数学期望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《骆驼祥子》教学设计
- 机器操作人员安全装备指南
- 岩土工程设计服务费用协议
- 水上救援车辆使用规范
- 人民银行职员聘用合同
- 煤炭纪念馆煤仓施工合同
- 活动场地租赁合同范本
- 2024-2025学年度高三年级11月联考试题及答案
- 供应链合同施工承诺书
- 动物园兽医实习生招聘协议
- 含砷硫化铜精矿的氧化焙烧
- 维修电工高级实操题库
- 风电场安全性评价
- 《羲之雅好服食养性》2021年湖北随州中考文言文阅读真题(含答案与翻译)
- 2023年全国统一高考英语试卷(甲卷)及答案解析
- 新生儿科品管圈成果汇报模板成品-降低新生儿红臀发生率课件
- 饲料公司总经理岗位职责
- 体育课少年拳(第一套)教案
- 新编简明英语语言学教程戴炜栋第1-3章课后练习题答案
- 语文研究性学习提出的背景及意义
- 食堂安全考试试题含答案三级安全教育考试
评论
0/150
提交评论