![江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题含解析2_第1页](http://file4.renrendoc.com/view10/M02/1F/07/wKhkGWW9MK2AAvbMAAJ9s2qlOIY314.jpg)
![江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题含解析2_第2页](http://file4.renrendoc.com/view10/M02/1F/07/wKhkGWW9MK2AAvbMAAJ9s2qlOIY3142.jpg)
![江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题含解析2_第3页](http://file4.renrendoc.com/view10/M02/1F/07/wKhkGWW9MK2AAvbMAAJ9s2qlOIY3143.jpg)
![江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题含解析2_第4页](http://file4.renrendoc.com/view10/M02/1F/07/wKhkGWW9MK2AAvbMAAJ9s2qlOIY3144.jpg)
![江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题含解析2_第5页](http://file4.renrendoc.com/view10/M02/1F/07/wKhkGWW9MK2AAvbMAAJ9s2qlOIY3145.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省吴江平望中学2024届数学高二第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知具有线性相关关系的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2)A5(6,4),用最小二乘法得到回归直线方程l1:y=bx+a,过点A1,A2的直线方程l2:y=mx+n那么下列4个命题中(1);(2)直线过点;(3);(4).(参考公式,)正确命题的个数有()A.1个 B.2个 C.3个 D.4个2.若命题“存在,使”是假命题,则非零实数的取值范围是()A. B. C. D.3.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱,其中,若,当“阳马”即四棱锥体积最大时,“堑堵”即三棱柱的表面积为A. B. C. D.4.函数的大致图象为()A. B. C. D.5.若,则“成等比数列”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件6.执行如图所示的程序框图,若输入的为2,则输出的值是()A.2 B.1 C. D.-17.在上可导的函数的图像如图所示,则关于的不等式的解集为()A. B. C. D.8.函数的图象是由函数的图像向左平移个单位得到的,则()A. B. C. D.9.(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为A.1 B.2C.4 D.810.如图所示是一个几何体的三视图,则其表面积为()A. B.C. D.11.执行如图所示的程序框图,如果输入n=3,输出的S=()A. B. C. D.12.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于4”;事件B:“甲、乙两骰子的点数之和等于7”,则的值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.计算:01(14.已知复数的共轭复数是,且,则的虚部是__________.15.已知数列的前项和公式为,则数列的通项公式为_________.16.已知过抛物线的焦点F的直线交该抛物线于A、B两点,,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,.(1)证明:数列为等比数列;(2)求数列的前项和.18.(12分)如图(1),等腰梯形,,,,,分别是的两个三等分点,若把等腰梯形沿虚线、折起,使得点和点重合,记为点,如图(2).(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值.19.(12分)如图,已知三棱柱,底面,,,为的中点.(I)证明:面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取株作为样本进行研究.株高在及以下为不良,株高在到之间为正常,株高在及以上为优等.下面是这个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:(1)求的值并在答题卡的附图中补全频率分布直方图;(2)通过频率分布直方图估计这株株高的中位数(结果保留整数);(3)从育种基地内这种品种的种株中随机抽取2株,记表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量的分布列(用最简分数表示).21.(12分)在数列中,,,其中实数.(1)求,并由此归纳出的通项公式;(2)用数学归纳法证明(Ⅰ)的结论.22.(10分)设函数.(1)求不等式的解集;(2)若不等式恒成立,求实数m的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:先求均值,再代公式求b,a,再根据最小二乘法定义判断命题真假.详解:因为,所以直线过点;因为,所以因为,所以,因为过点A1,A2的直线方程,所以,即;根据最小二乘法定义得;(4).因此只有(1)(2)正确,选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.2、C【解题分析】
根据命题真假列出不等式,解得结果.【题目详解】因为命题“存在,使”是假命题,所以,解得:,因为.故选:.【题目点拨】本题考查命题真假求参数,注意已知条件非零实数是正确解答本题的关键,考查学生分析求解能力,难度较易.3、C【解题分析】分析:由四棱锥的体积是三棱柱体积的,知只要三棱柱体积最大,则四棱锥体积也最大,求出三棱柱的体积后用基本不等式求得最大值,及取得最大值时的条件,再求表面积.详解:四棱锥的体积是三棱柱体积的,,当且仅当时,取等号.∴.故选C.点睛:本题考查棱柱与棱锥的体积,考查用基本不等式求最值.解题关键是表示出三棱柱的体积.4、B【解题分析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.5、B【解题分析】分析:根据等比数列的定义和等比数列的性质,即可判定得到结论.详解:由题意得,例如,此时构成等比数列,而不成立,反之当时,若,则,所以构成等比数列,所以当时,构成等比数列是构成的等比数列的必要不充分条件,故选B.点睛:本题主要考查了等比数列的定义和等比数列的性质,其中熟记等比数列的性质和等比数列的定义的应用是解答的关键,着重考查了推理与论证能力.6、A【解题分析】
根据给定的程序框图,执行循环体,逐次计算、判断,即可得到输出的结果,得到答案.【题目详解】由题意,执行如图所示的程序框图,可得:第一次循环:,满足判断条件,;第二次循环:,满足判断条件,;第三次循环:,满足判断条件,;第四次循环:,满足判断条件,;第五次循环:,满足判断条件,;第六次循环:,不满足判断条件,输出结果,故选A.【题目点拨】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.7、B【解题分析】
分别讨论三种情况,然后求并集得到答案.【题目详解】当时:函数单调递增,根据图形知:或当时:不成立当时:函数单调递减根据图形知:综上所述:故答案选B【题目点拨】本题考查了根据图像判断函数的单调性,意在考查学生的读图能力.8、B【解题分析】
把的图像向左平移个单位后得到的图像,化简后可得的值,利用两角和的余弦和正弦展开后可得的值.【题目详解】把的图像向左平移个单位后得到所得图像的解析式为,根据可得①,所以即(舍),又对①化简可得,故,故选B.【题目点拨】三角函数的图像往往涉及振幅变换、周期变换和平移变换,注意左右平移时是自变量作相应的变化,而且周期变换和平移变换(左右平移)的次序对函数解析式的也有影响,比如,它可以由先向左平移个单位,再纵坐标不变,横坐标变为原来的,也可以先保持纵坐标不变,横坐标变为原来的,再向左平移..9、C【解题分析】设公差为,,,联立解得,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则.10、A【解题分析】
根据三视图可得对应的三棱锥,逐个计算其侧面积和底面积可得其表面积.【题目详解】将三视图复原后得到的几何体即为如图所示的三棱锥,其中是棱长为4的正方体的顶点,为正方体的底面中心,注意到所以,,,因此该三棱锥的表面积等于.故选A.【题目点拨】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.11、B【解题分析】
试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和.【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.12、C【解题分析】本小题属于条件概率所以事件B包含两类:甲5乙2;甲6乙1;所以所求事件的概率为二、填空题:本题共4小题,每小题5分,共20分。13、e-【解题分析】试题分析:01(e考点:定积分.14、【解题分析】
设复数,代入等式得到答案.【题目详解】设复数故答案为【题目点拨】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.15、【解题分析】
由,可得当时的数列的通项公式,验证时是否符合即可.【题目详解】当时,,
当时,,经验证当时,上式也适合,故此数列的通项公式为,故答案为.【题目点拨】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题.已知数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.在利用与通项的关系求的过程中,一定要注意的情况.16、2【解题分析】试题分析:焦点坐标,准线方程,由|AF|=2可知点A到准线的距离为2,所以轴,考点:抛物线定义及直线与抛物线相交的弦长问题点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,依据定义可实现两个距离的转化三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解题分析】
(1)利用等比数列的定义可以证明;(2)由(1)可求的通项公式,结合可得,结合通项公式公式特点选择分组求和法进行求和.【题目详解】证明:(1)∵,∴.又∵,∴.又∵,∴数列是首项为2,公比为4的等比数列.解:(2)由(1)求解知,,∴,∴.【题目点拨】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养.18、(1)详见解析;(2).【解题分析】
(1)推导出,,从而面,由此能证明平面平面;(2)过点作于,过点作的平行线交于点,则面,以为原点,以,,所在直线分别为轴、轴、轴建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值.【题目详解】(1)证明:四边形为等腰梯形,,,,,是的两个三等分点,四边形是正方形,,,且,面,又平面,平面平面;(2)过点作于点,过点作的平行线交于点,则面,以为坐标原点,以,,所在直线分别为轴、轴、轴建立空间直角坐标系,如图所示:则,,,,,,,,设平面的法向量,则,取,得,设平面的法向量,则,∴,取,得:,设平面与平面所成锐二面角为,则.平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查平面与平面垂直的判定以及二面角平面角的求法,属于常考题.19、(I)证明见解析;(Ⅱ).【解题分析】
(I)连接,交于,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理可证明平面;(Ⅱ)以,,为,,轴建立空间直角坐标系,并设,计算出平面的一个法向量,记直线平面所成角为,于是得出可得出直线与平面所成角的正弦值。【题目详解】(Ⅰ)证明:连接,交于,所以为的中点,又因为为的中点,所以,因为在面内,不在面内,所以面;(Ⅱ)以,,为,,轴建立空间直角坐标系(不妨设).所以,,,,设面的法向量为,则,解得.因为,记直线平面所成角为.所以.【题目点拨】本题考查直线与平面平行的证明,考查直线与平面所成角的计算,常见的有定义法和空间向量法,可根据题中的条件来选择,考查逻辑推理能力与运算求解能力,属于中等题。20、(1),补图见解析(2)估计这株株高的中位数为82(3)见解析【解题分析】
根据茎叶图和频率直方图,求出中位数,得离散型随机变量的分布列.【题目详解】解:(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产业园区厂房购买合同书
- 业务员岗位合同保密责任书2025
- 个人贷款抵押合同模板
- 个人借款合同度还款计划书模板
- 个人贷款合同延期至全新协议
- 个人知识产权质押借款标准合同
- 2025年标准商业办公租赁协议
- 云计算服务合同(三):企业级解决方案
- KTV广告投放合同范本
- 个人贷款合同示范文本
- 《教育强国建设规划纲要(2024-2035年)》解读讲座
- 2025河北邯郸世纪建设投资集团招聘专业技术人才30人高频重点提升(共500题)附带答案详解
- 慈溪高一期末数学试卷
- 《基于新课程标准的初中数学课堂教学评价研究》
- 贵州省黔东南州2024年七年级上学期数学期末考试试卷【附答案】
- 医院廉洁自律承诺书
- 胚胎移植术前术后护理
- 企业招聘技巧培训
- 学校校本课程《英文电影鉴赏》文本
- 中考语文句子排序练习题(文本版)
- 华为HCSA-Presales-IT售前认证备考试题及答案
评论
0/150
提交评论