2024届桂林中学数学高二第二学期期末预测试题含解析_第1页
2024届桂林中学数学高二第二学期期末预测试题含解析_第2页
2024届桂林中学数学高二第二学期期末预测试题含解析_第3页
2024届桂林中学数学高二第二学期期末预测试题含解析_第4页
2024届桂林中学数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届桂林中学数学高二第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.42.已知实数,则的大小关系是()A. B. C. D.3.在椭圆内,通过点,且被这点平分的弦所在的直线方程为()A. B.C. D.4.某程序框图如图所示,该程序运行后输出的的值是()A.4 B.5 C.6 D.75.在的展开式中,二项式系数最大的项的系数为()A. B. C. D.6.若双曲线的一条渐近线为,则实数()A. B.2 C.4 D.7.已知a=,b=,c=,则()A.a<b<c B.c<b<aC.c<a<b D.b<c<a8.已知,,那么等于()A. B. C. D.9.运行下列程序,若输入的的值分别为,则输出的的值为A. B.C. D.10.若函数在(0,2)内单调递减,则实数的取值范围为()A.≥3 B.=3 C.≤3 D.0<<311.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.12.已知函数,则不等式的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正三棱柱中,分别是的中点.设是线段上的(包括两个端点)动点,当直线与所成角的余弦值为,则线段的长为_______.14.已知复数(,为常数,)是复数的一个平方根,那么复数的两个平方根为______.15.某微信群中甲、乙、丙、丁、戊五名成员先后抢4个不相同的红包,每人最多抢一个红包,且红包全被抢光,则甲乙两人都抢到红包的情况有________种16.已知函数fx=axlnx,x∈0,+∞,其中a为实数,f'x为fx的导函数,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.18.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.19.(12分)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.20.(12分)已知二次函数(均为实数),满足,对于任意实数都有,并且当时,有.(1)求的值;并证明:;(2)当且取得最小值时,函数(为实数)单调递增,求证:.21.(12分)已知命题:函数在上是减函数,命题,.(1)若为假命题,求实数的取值范围;(2)若“或”为假命题,求实数的取值范围.22.(10分)已知函数.(Ⅰ)若,求的取值范围;(Ⅱ)证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【题目详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【题目点拨】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.2、B【解题分析】

根据,利用指数函数对数函数的单调性即可得出.【题目详解】解:∵,∴,,.∴.故选:B.【题目点拨】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.3、A【解题分析】试题分析:设以点为中点的弦的端点分别为,则,又,两式相减化简得,即以点为中点的弦所在的直线的斜率为,由直线的点斜式方程可得,即,故选A.考点:直线与椭圆的位置关系.4、A【解题分析】

根据框图,模拟计算即可得出结果.【题目详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【题目点拨】本题主要考查了程序框图,循环结构,属于中档题.5、B【解题分析】

根据展开式中二项式系数最大的项是,由此求出它的系数.【题目详解】的展开式中,二项式系数最大的项是其系数为-1.

故选B..【题目点拨】本题考查了二项式展开式系数的应用问题,是基础题.6、C【解题分析】

根据双曲线的标准方程求出渐近线方程,根据双曲线的一条渐近线求得m的值.【题目详解】双曲线中,,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数.故选:C.【题目点拨】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题.7、D【解题分析】

分别考查指数函数在R上单调性和幂函数在(0,+∞)上单调性即可得出.【题目详解】∵y=在R上为减函数,>,∴b<c.又∵y=在(0,+∞)上为增函数,>,∴a>c,∴b<c<a.故选:D【题目点拨】熟练掌握指数函数和幂函数的单调性是解题的关键.8、B【解题分析】

根据条件概率公式得出可计算出结果.【题目详解】由条件概率公式得,故选B.【题目点拨】本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.9、B【解题分析】分析:按照程序框图的流程逐一写出即可详解:第一步:第二步:第三步:第四步:最后:输出.,故选B.点睛:程序框图的题学生只需按照程序框图的意思列举前面有限步出来,观察规律,得出所求量与步数之间的关系式.10、A【解题分析】

由题可得:在恒成立.整理得:在恒成立.求得:,即可得:,问题得解.【题目详解】由题可得:在恒成立.即:在恒成立.又,所以.所以故选A【题目点拨】本题主要考查了导数与函数单调性的关系,还考查了恒成立问题解决方法,考查转化能力,属于中档题.11、D【解题分析】

用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.12、C【解题分析】

先判断出函数为奇函数且在定义域内单调递增,然后把不等式变形为,再利用单调性求解即可.【题目详解】由题意得,函数的定义域为R.∵,∴函数为奇函数.又根据复合函数的单调性可得,函数在定义域上单调递增.由得,∴,解得,∴不等式的解集为.故选C.【题目点拨】解答本题的关键是挖掘题意、由条件得到函数的奇偶性和单调性,最后根据函数的单调性求解,这是解答抽象不等式(即不知表达式的不等式)问题的常用方法,考查理解和应用能力,具有一定的难度和灵活性.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

以E为原点,EA,EC为x,y轴建立空间直角坐标系,设,用空间向量法求得t,进一步求得BD.【题目详解】以E为原点,EA,EC为x,y轴建立空间直角坐标系,如下图.解得t=1,所以,填.【题目点拨】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.14、,【解题分析】

由题可知,再对开根号求的两个平方根即可.【题目详解】由题,故,即,故复数的两个平方根为与故答案为:,【题目点拨】本题主要考查了复数的基本运算,运用即可联系与的关系,属于基础题型.15、72【解题分析】第一步甲乙抢到红包,有种,第二步其余三人抢剩下的两个红包,有种,所以甲乙两人都抢到红包的情况有种.16、3【解题分析】试题分析:f'(x)=alnx+a,所以考点:导数的运算.【名师点睛】(1)在解答过程中常见的错误有:①商的求导中,符号判定错误.②不能正确运用求导公式和求导法则.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量.②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),l的极坐标方程为;(2)【解题分析】

(1)先由题意,将代入即可求出;根据题意求出直线的直角坐标方程,再化为极坐标方程即可;(2)先由题意得到P点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.【题目详解】(1)因为点在曲线上,所以;即,所以,因为直线l过点且与垂直,所以直线的直角坐标方程为,即;因此,其极坐标方程为,即l的极坐标方程为;(2)设,则,,由题意,,所以,故,整理得,因为P在线段OM上,M在C上运动,所以,所以,P点轨迹的极坐标方程为,即.【题目点拨】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.18、(1)(2)【解题分析】

试题分析:(1)根据正弦定理把化成,利用和角公式可得从而求得角;(2)根据三角形的面积和角的值求得,由余弦定理求得边得到的周长.试题解析:(1)由已知可得(2)又,的周长为考点:正余弦定理解三角形.19、(1)要使倾斜后容器内的溶液不会溢出,的最大值是45°(2)不能实现要求,详见解析【解题分析】

(1)当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.(2)当时,设剩余的液面为,比较与60°的大小后发现在上,计算此时倒出的液体体积,比小,从而得出结论.【题目详解】(1)如图③,当倾斜至上液面经过点B时,容器内溶液恰好不会溢出,此时最大.解法一:此时,梯形的面积等于,因为,所以,,即,解得,.所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°.③解法二:此时,的面积等于图①中没有液体部分的面积,即,因为,所以,即,解得,.所以,要使倾斜后容器内的溶液不会溢出,的最大值是45°.(2)如图④,当时,设上液面为,因为,所以点F在线段上,④此时,,,剩余溶液的体积为,由题意,原来溶液的体积为,因为,所以倒出的溶液不满.所以,要倒出不少于的溶液,当时,不能实现要求.【题目点拨】本题考查三角函数的实际应用,解题关键是确定倾斜后容器内的溶液的液面位置,然后才能计算解决问题.20、(1)答案见解析;(2)证明见解析【解题分析】试题分析:(1)由函数的解析式可得,结合均值不等式的结论可得.(2)由题意讨论二次函数的对称轴和单调性即可证得题中的结论.试题解析:(1)由题意,即,又,∴,则恒成立∴,∴.(2)由(1)可得,当且仅当时取等号此时,要使其在区间内单调递增,必有对称轴与其关系为,即为所证.21、(1).(2).【解题分析】分析:第一问利用命题的否定和命题本身是一真一假的,根据命题q是假命题,得到命题的否定是真命题,结合二次函数图像,得到相应的参数的取值范围;第二问利用“或”为假命题,则有两个命题都是假命题,所以先求命题p为真命题时参数的范围,之后求其补集,得到m的范围,之后将两个命题都假时参数的范围取交集,求得结果.详解:(1)因为命题,所以:,,当为假命题时,等价于为真命题,即在上恒成立,故,解得所以为假命题时,实数的取值范围为.(2)函数的对称轴方程为,当函数在上是减函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论