2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题含解析_第1页
2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题含解析_第2页
2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题含解析_第3页
2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题含解析_第4页
2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省白银市靖远县第一中学数学高二第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从、、中任取两个字母排成一列,则不同的排列种数为()A. B. C. D.2.对于实数和,定义运算“*”:设,且关于的方程为恰有三个互不相等的实数根、、,则的取值范围是()A.B.C.D.3.设函数,其中,,存在使得成立,则实数的值为()A.B.C.D.4.若a=72-12,b=27A.a<b<c B.a<c<b C.c<b<a D.c<a<b5.设全集U={1,3,5,7},集合M={1,|a-5|},MU,M={5,7},则实数a的值为()A.2或-8 B.-8或-2 C.-2或8 D.2或86.在(x+1x2A.-32 B.-8 C.8 D.487.已知函数则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1) B.(-∞,1)C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)8.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.609.若,则()A. B. C. D.10.已知双曲线的一个焦点坐标为,且双曲线的两条渐近线互相垂直,则该双曲线的方程为()A. B. C. D.或11.已知下列说法:①对于线性回归方程,变量增加一个单位时,平均增加5个单位;②甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;③对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;④两个随机变量的线性相关性越强,则相关系数就越接近1.其中说法错误的个数为()A.1 B.2 C.3 D.412.从中不放回地依次取个数,事件表示“第次取到的是奇数”,事件表示“第次取到的是奇数”,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域内存在单调递减区间,则实数的取值范围是______14.如图,在正三棱柱中,已知它的底面边长为10,高为20,若P、Q分别是、的中点,则异面直线与所成角的大小为_________(结果用反三角函数表示).15.已知,则_________.16.已知复数z满足,若z在复平面上对应点的轨迹是椭圆,则实数a的取值范围是______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调递增区间;(2)求函数在上的最大值和最小值.18.(12分)设数列的前项和为,且满足.(1)若为等比数列,求的值及数列的通项公式;(2)在(1)的条件下,设,求数列的前项和.19.(12分)若,求证:.20.(12分)已知,(1)求的值;(2)若且,求的值;(3)求证:.21.(12分)等差数列的前项和为,求数列前项和.22.(10分)已知直线,,,其中与的交点为P.(1)求点P到直线的距离;(2)求过点P且与直线的夹角为的直线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

从、、中任取两个字母排成一列,直接利用排列数公式可得出结果.【题目详解】由排列数的定义可知,从、、中任取两个字母排成一列,则不同的排列种数为.故选:D.【题目点拨】本题考查排列数的应用,考查计算能力,属于基础题.2、A【解题分析】试题分析:当时,即当时,,当时,即当时,,所以,如下图所示,当时,,当时,,当直线与曲线有三个公共点时,,设,则且,,且,所以,因此,所以,,故选A.考点:1.新定义;2.分段函数;3.函数的图象与零点3、A【解题分析】试题分析:函数f(x)可以看作是动点M(x,lnx2)与动点N(A,2A)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y'==2,解得x=1,∴曲线上点M(1,0)到直线y=2x的距离最小,最小距离D=,则f(x)≥,根据题意,要使f()≤,则f()=,此时N恰好为垂足,由,解得考点:导数在最大值、最小值问题中的应用4、D【解题分析】

利用指数函数对数函数的单调性,利用指数对数函数的运算比较得解.【题目详解】因为27-1故选:D【题目点拨】本题主要考查指数函数对数函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解题分析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题.研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.6、C【解题分析】

利用x-25的展开式通项,与x和1x2分别做乘法,分别求得x的系数,作和求得整体的【题目详解】x-25展开式的通项为:与x相乘可得:x⋅当r=5时得:C与1x2当r=2时得:C∴x的系数为:-32+40=8本题正确选项:C【题目点拨】本题考查二项式定理求解xn的系数的问题,关键在于能够运用多项式相乘的运算法则,分别求出同次项的系数,合并同类项得到结果7、D【解题分析】试题分析:函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.考点:函数的零点.点评:本题充分体现了数形结合的数学思想.函数的零点、方程的根、函数图像与x轴的交点,做题时注意三者之间的等价转化.8、B【解题分析】

用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.9、A【解题分析】

根据诱导公式和余弦的倍角公式,化简得,即可求解.【题目详解】由题意,可得,故选A.【题目点拨】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解题分析】分析:先利用双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利用焦点位置确定双曲线的类型,最后利用几何元素间的等量关系进行求解.详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为等轴双曲线,即,又双曲线的一个焦点坐标为,所以,即,即该双曲线的方程为.故选D.点睛:本题考查了双曲线的几何性质,要注意以下等价关系的应用:等轴双曲线的离心率为,其两条渐近线相互垂直.11、B【解题分析】

根据回归分析、独立性检验相关结论来对题中几个命题的真假进行判断。【题目详解】对于命题①,对于回归直线,变量增加一个单位时,平均减少个单位,命题①错误;对于命题②,相关指数越大,拟合效果越好,则模型甲的拟合效果更好,命题②正确;对于命题③,对分类变量与,随机变量的观测值越大,根据临界值表,则犯错误的概率就越小,则判断“与有关系”的把握程度越高,命题③正确;对于命题④,两个随机变量的线性相关性越强,则相关系的绝对值越接近于,命题④错误.故选:B.【题目点拨】本题考查回归分析、独立性检验相关概念的理解,意在考查学生对这些基础知识的理解和掌握情况,属于基础题。12、D【解题分析】试题分析:由题意,,∴,故选D.考点:条件概率与独立事件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题意可知在内能成立,利用参变量分离法,转化为在上能成立,令,则将问题转化为,从而得到实数的取值范围.【题目详解】∵函数,∴在上能成立,∴,令,即为,∵的最大值为,∴,∴实数的取值范围为,故选答案为.【题目点拨】本题考查了利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数存在减区间,经常会运用分离变量,转化为求最值.属于中档题.14、;【解题分析】

作出两异面直线所成的角,然后在三角形求解.【题目详解】取中点,连接,∵是中点,∴,∴异面直线与所成的角为或其补角.在正三棱柱中,,则,,∴,,,∴,∴异面直线与所成的角的余弦为,角的大小为.故答案为.【题目点拨】本题考查异面直线所成的角,解题关键是作出两条异面直线所成的角,然后通过解三角形得出结论.方法是根据定义,平移其中一条直线使之与另一条相交,则异面直线所成的角可确定.平行线常常通过中位线、或者线面平行的性质定理等得出.15、【解题分析】

根据二项式定理,,推导出,由,能求出.【题目详解】解:,,,由,解.故答案为1.【题目点拨】本题考查实数值的求法,考查组合数公式等基础知识,考查推理能力与计算能力,考查函数与方程思想,是基础题.16、【解题分析】

由复数模的几何意义及椭圆的定义列出不等式求解。【题目详解】表示复数对应的点到和对应的点的距离之和为2,它的轨迹是椭圆,则,∵,∴,。故答案为:。【题目点拨】本题考查复数模的几何意义,考查椭圆的定义。到两定点的距离之和为常数的动点轨迹是椭圆时,有一要求就是两定点间的距离小于这个常数。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)11,-1【解题分析】

(1).令,解此不等式,得x<-1或x>1,因此,函数的单调增区间为.(2)令,得或.-当变化时,,变化状态如下表:

-2

-1

1

2

+

0

-

0

+

-1

11

-1

11

从表中可以看出,当时,函数取得最小值.当时,函数取得最大值11.18、(1),;(2).【解题分析】

(1)利用和关系得到,验证时的情况得到,再利用等比数列公式得到数列的通项公式.(2)计算数列的通项公式,利用分组求和法得到答案.【题目详解】(1)当时,,当时,,与已知式作差得,即,欲使为等比数列,则,又.故数列是以为首项,2为公比的等比数列,所以.(2)由(1)有得..【题目点拨】本题考查了等比数列的通项公式,分组求和法求前n项和,意在考查学生的计算能力.19、见解析【解题分析】

引入函数,展开,其中,,是整数,,注意说明的唯一性,这样有,,然后计算即可.【题目详解】证明:因为,所以,由题意,首先证明对于固定的,满足条件的是唯一的.假设,则,而,矛盾。所以满足条件的是唯一的.下面我们求及的值:因为,显然.又因为,故,即.所以令,,则,,又,所以.【题目点拨】本题考查二项式定理的应用,解题关键是引入函数,展开,其中,,是整数,,于是可表示出.本题有一定的难度.20、(1)(2)(3)见解析【解题分析】分析:(1)令,根据可求的值;(2)由,解得可求的值;(3)利用二项展开式及放缩法即可证明.:详解:(1)令,则=0,又所以(2)由,解得,所以(3)点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.21、【解题分析】

由已知条件利用等差数列前项和公式求出公差和首项,由此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论