版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市温州实验中学数学九年级第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)2.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是()A.②③ B.①③④ C.①②④ D.①②③④3.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D,当四边形ABCD的面积为6时,则k的值是()A.6 B.3 C.2 D.4.下列二次根式中,不是最简二次根式的是()A. B. C. D.5.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上6.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠07.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A.13 B.16 C.12或13 D.11或168.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)9.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(2,﹣3) D.(﹣3,﹣3)10.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是811.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个12.抛物线y=(x-4)(x+2)的对称轴方程为()A.直线x=-2 B.直线x=1 C.直线x=-4 D.直线x=4二、填空题(每题4分,共24分)13.在英语句子“Wishyousuccess”(祝你成功)中任选一个字母,这个字母为“s”的概率是.14.点是二次函数图像上一点,则的值为__________15.如图所示,平面上七个点,,,,,,,图中所有的连线长均相等,则______.16.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.17.在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为_____.18.若一组数据1,2,x,4的平均数是2,则这组数据的方差为_____.三、解答题(共78分)19.(8分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.20.(8分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率.(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球.21.(8分).在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.22.(10分)如图,在梯形中,,,,,,点在边上,,点是射线上一个动点(不与点、重合),联结交射线于点,设,.(1)求的长;(2)当动点在线段上时,试求与之间的函数解析式,并写出函数的定义域;(3)当动点运动时,直线与直线的夹角等于,请直接写出这时线段的长.23.(10分)如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG
=2BE.设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?24.(10分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.(1)用含x的代数式表示DF=;(1)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?25.(12分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.26.如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.考点:二次函数的性质.2、D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.3、B【分析】根据反比例函数的对称性可知:OB=OD,AB=CD,再由反比例函数y=中k的几何意义,即可得到结论.【详解】解:∵正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,∴AB=OB=OD=CD,∴四边形ABCD是平行四边形,∴k=2S△AOB=2×=3,故选:B.【点睛】本题考查反比例函数与正比例函数的结合题型,关键在于熟悉反比例函数k值的几何意义.4、C【解析】根据最简二次根式的定义对各选项分析判断即可.【详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.5、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点6、A【分析】根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.7、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.【详解】∵x2-5x+6=0,
∴(x-3)(x-2)=0,
解得:x1=3,x2=2,
∵三角形的两边长分别是4和6,
当x=3时,3+4>6,能组成三角形;
当x=2时,2+4=6,不能组成三角形.
∴这个三角形的第三边长是3,
∴这个三角形的周长为:4+6+3=13.
故选A.【点睛】此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.8、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.9、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数即可.【详解】解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.极差,结论错误,故A不符合题意;B.众数为5,7,11,3,1,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C不符合题意;D.平均数是,方差.结论正确,故D符合题意.故选D.【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.11、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.12、B【解析】把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.【详解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴对称轴方程为x=1.故选:B.【点睛】本题考查了二次函数的性质,是基础题,把抛物线解析式整理成顶点式解析式是解题的关键.二、填空题(每题4分,共24分)13、【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.14、1【分析】把点代入即可求得值,将变形,代入即可.【详解】解:∵点是二次函数图像上,
∴则.∴
故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.15、【分析】连接AC、AD,由各边都相等,得△ABG、△AEF、△CBG和△DEF都是等边三角形,四边形ABCG、四边形AEDF是菱形,若设AB的长为x,根据等边三角形、菱形的性质,计算出AD的长,∠BAC=∠EAD=30°,证明∠BAF=∠CAD,在△CAD中构造直角△AMD,利用勾股定理求出cos∠CAD.【详解】连接AC、AD,过点D作DM⊥AC,垂直为M.设AE的长为x,则AB=AG=BG=CG=CB=AF=AE=EF=x,∴△ABG、△AEF、△CBG和△DEF都是等边三角形,四边形ABCG、四边形AEDF是菱形,
∴∠BAC=∠EAD=30°∴∵∠CAD=∠BAE-∠BAC-∠EAD=∠BAE-60°,∠BAF=∠BAE-∠EAF=∠BAE-60°∴∠BAF=∠CAD在Rt△AMD中,因为DM=AM=cos∠CAD,CM=在Rt△CMD中,
CD2=CM2+MD2,
即
整理,得
∴cos∠CAD=
∴cos∠BAF=故答案为:.【点睛】本题考查了等边三角形与菱形的性质,勾股定理以及三角函数的应用,解题的关键是根据勾股定理建立方程.16、.【分析】可利用勾股定理及所给的比值得到所求的线段长.【详解】如图,∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4米.故答案为4.【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.17、【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为.【点睛】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.18、【分析】先由数据的平均数公式求得x,再根据方差的公式计算即可.【详解】∵数据1,2,x,4的平均数是2,∴,解得:,∴方差.故答案为:.【点睛】本题考查了平均数与方差的定义,平均数是所有数据的和除以数据的个数;方差是一组数据中各数据与它们的平均数的差的平方的平均数.三、解答题(共78分)19、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.20、(1);(2).【分析】(1)列表得出所有等可能的情况数,找出两次摸到红球的情况数,即可确定出所求的概率;(2)列表得出所有等可能的情况数,找出第一次摸到红球,第二次摸到绿球的情况数,即可确定出所求的概率.【详解】(1)列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=;(2)由(1)得第一次摸到红球,第二次摸到绿球只有一种,故其概率为.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21、(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.22、(1);(1);(3)线段的长为或13【分析】(1)如图1中,作AH⊥BC于H,解直角三角形求出EH,CH即可解决问题.
(1)延长AD交BM的延长线于G.利用平行线分线段成比例定理构建关系式即可解决问题.
(3)分两种情形:①如图3-1中,当点M在线段DC上时,∠BNE=∠ABC=45°.②如图3-1中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,利用相似三角形的性质即可解决问题.【详解】:(1)如图1中,作AH⊥BC于H,
∵AD∥BC,∠C=90°,
∴∠AHC=∠C=∠D=90°,
∴四边形AHCD是矩形,
∴AD=CH=1,AH=CD=3,
∵tan∠AEC=3,
∴=3,
∴EH=1,CE=1+1=3,
∴BE=BC-CE=5-3=1.(1)延长,交于点,∵AG∥BC,∴,∴,∵,∴.解得:(3)①如图3-1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵,,则有,解得:②如图3-1中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,
∵,∴,则有,解得综上所述:线段的长为或13.【点睛】此题考查四边形综合题,相似三角形的判定和性质,矩形的判定和性质,解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.23、(1)y=-2x+4x+16;(2)2米【分析】(1)若BE的长为x米,则改造后矩形的宽为米,长为米,求矩形面积即可得出y与x之间的函数关系式;(2)根据题意可令函数值为16,解一元二次方程即可.【详解】解:(1)∵BE边长为x米,∴AE=AB-BE=4-x,AG=AD+DG=4+2x苗圃的面积=AE×AG=(4-x)(4+2x)则苗圃的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-2x+4x+16(2)依题意,令y=16即-2x+4x+16=16解得:x=0(舍)x=2答:此时BE的长为2米.【点睛】本题考查的知识点是列函数关系式以及二次函数的实际应用,难度不大,找准题目中的等量关系式是解此题的关键.24、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以1可得DF的长度;(1)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-11x(1)根据题意,得5x(48-11x)=180,解得x1=1,x1=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-11x)=-60x1+140x=-60(x-1)1+140∵-60<0,∴当x=1时,S有最大值,最大值为140答:x为1时,区域③的面积最大,为140平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.25、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.【解析】试题分析:(1)AM=DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=DE,AM⊥D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分裂情感性精神病
- 防震疏散演练主题班会
- 2024年非公路矿用车项目投资申请报告代可行性研究报告
- 3.3.2盐类的水解影响因素及应用 课件 高二上学期化学人教版(2019)选择性必修1
- 智慧航安培训方案
- 吉林省2024七年级数学上册第1章有理数阶段综合训练范围1.9~1.14课件新版华东师大版
- 生命安全教育我的烦恼
- 草原上教案及教学反思
- 食堂食品安全培训
- 水利资源利用审批管理办法
- 复合风管制作工艺
- 多元智能测试题及多元智能测试量表
- 出货检验报告三篇
- 完整版平安基础性向测试智商测试题及问题详解
- (完整版)基层版创伤中心建设指南(试行)
- 无公害生姜生产基地项目可行性研究报告
- 学习乡村振兴知识竞赛100题及答案
- 05s502图集阀门井安装图集
- 医务人员医学人文素养培训
- 人工智能智慧树知到答案章节测试2023年复旦大学
- 风险管理工具及方法FMEA
评论
0/150
提交评论